論文の概要: Event-Based Frame Interpolation with Ad-hoc Deblurring
- arxiv url: http://arxiv.org/abs/2301.05191v1
- Date: Thu, 12 Jan 2023 18:19:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 14:35:53.275109
- Title: Event-Based Frame Interpolation with Ad-hoc Deblurring
- Title(参考訳): アドホックデブリによるイベントベースフレーム補間
- Authors: Lei Sun, Christos Sakaridis, Jingyun Liang, Peng Sun, Jiezhang Cao,
Kai Zhang, Qi Jiang, Kaiwei Wang, Luc Van Gool
- Abstract要約: 本稿では,入力ビデオのアドホックを損なうイベントベースフレームの一般的な手法を提案する。
我々のネットワークは、フレーム上の最先端の手法、単一画像のデブロアリング、および共同作業のデブロアリングを一貫して上回ります。
コードとデータセットは公開されます。
- 参考スコア(独自算出の注目度): 68.97825675372354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of video frame interpolation is inherently correlated with
the ability to handle motion in the input scene. Even though previous works
recognize the utility of asynchronous event information for this task, they
ignore the fact that motion may or may not result in blur in the input video to
be interpolated, depending on the length of the exposure time of the frames and
the speed of the motion, and assume either that the input video is sharp,
restricting themselves to frame interpolation, or that it is blurry, including
an explicit, separate deblurring stage before interpolation in their pipeline.
We instead propose a general method for event-based frame interpolation that
performs deblurring ad-hoc and thus works both on sharp and blurry input
videos. Our model consists in a bidirectional recurrent network that naturally
incorporates the temporal dimension of interpolation and fuses information from
the input frames and the events adaptively based on their temporal proximity.
In addition, we introduce a novel real-world high-resolution dataset with
events and color videos named HighREV, which provides a challenging evaluation
setting for the examined task. Extensive experiments on the standard GoPro
benchmark and on our dataset show that our network consistently outperforms
previous state-of-the-art methods on frame interpolation, single image
deblurring and the joint task of interpolation and deblurring. Our code and
dataset will be made publicly available.
- Abstract(参考訳): 映像フレーム補間の性能は、入力シーンにおける動きの処理能力と本質的に相関する。
以前の作業では非同期イベント情報の実用性が認識されていたが、フレームの露光時間の長さや動きの速度によって、動きが補間される入力ビデオのぼやけを生じさせるか無視し、入力ビデオがシャープでフレーム補間に制限されているか、あるいはパイプラインの補間前に明示的で分離した補間ステージを含むぼやけているかのどちらかを想定している。
代わりに,アドホックをデブラリングし,シャープでぼやけた入力ビデオで動作させる,イベントベースのフレーム補間法を提案する。
本モデルでは,相互補間の時間的次元を自然に取り入れ,入力フレームとイベントからの情報を時間的近接に基づいて適応的に融合する双方向リカレントネットワークを構成する。
さらに,イベントとカラービデオを備えた新しいリアルタイム高解像度データセットであるHighREVを導入し,その課題に対する挑戦的な評価設定を提供する。
GoProの標準ベンチマークとデータセットによる大規模な実験により、我々のネットワークはフレーム補間、単一画像の分解、補間と分解のジョイントタスクにおいて、常に最先端の手法を上回ります。
私たちのコードとデータセットは公開される予定だ。
関連論文リスト
- Event-Based Video Frame Interpolation With Cross-Modal Asymmetric Bidirectional Motion Fields [39.214857326425204]
ビデオフレーム補間 (VFI) は連続的な入力フレーム間の中間映像フレームを生成することを目的としている。
クロスモーダルな非対称な双方向運動場推定を行うイベントベースVFIフレームワークを提案する。
提案手法は, 各種データセット上での最先端VFI法よりも高い性能向上を示す。
論文 参考訳(メタデータ) (2025-02-19T13:40:43Z) - Repurposing Pre-trained Video Diffusion Models for Event-based Video Interpolation [20.689304579898728]
イベントベースのビデオフレーム補間(EVFI)は、動き誘導としてスパースで高時間分解能なイベント計測を使用する。
我々は、インターネット規模のデータセットで訓練された事前学習ビデオ拡散モデルをEVFIに適用する。
提案手法は既存の手法より優れており,カメラ全体の一般化が従来の手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2024-12-10T18:55:30Z) - CMTA: Cross-Modal Temporal Alignment for Event-guided Video Deblurring [44.30048301161034]
ビデオデブロアリングは、隣接するビデオフレームから情報を集めることで、モーションレッドビデオの復元結果の品質を高めることを目的としている。
1) フレーム内機能拡張は, 単一のぼやけたフレームの露出時間内で動作し, 2) フレーム間時間的特徴アライメントは, 重要な長期時間情報を対象のフレームに収集する。
提案手法は, 合成および実世界のデブロアリングデータセットを用いた広範囲な実験により, 最先端のフレームベースおよびイベントベース動作デブロアリング法より優れていることを示す。
論文 参考訳(メタデータ) (2024-08-27T10:09:17Z) - Event-based Video Frame Interpolation with Edge Guided Motion Refinement [28.331148083668857]
本稿では,イベント信号のエッジ特徴を効果的に活用するためのエンドツーエンドE-VFI学習手法を提案する。
提案手法にはエッジガイド・アテンテーティブ(EGA)モジュールが組み込まれており,アテンテーティブアグリゲーションによって推定された映像の動きを補正する。
合成データと実データの両方を用いた実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-04-28T12:13:34Z) - Revisiting Event-based Video Frame Interpolation [49.27404719898305]
ダイナミックビジョンセンサーやイベントカメラは、ビデオフレームに豊富な補完情報を提供する。
イベントからの光の流れを推定することは、RGB情報より間違いなく困難である。
イベントベースの中間フレーム合成を複数の単純化段階において漸進的に行う分割・対数戦略を提案する。
論文 参考訳(メタデータ) (2023-07-24T06:51:07Z) - Blur Interpolation Transformer for Real-World Motion from Blur [52.10523711510876]
本稿では, ボケの時間的相関を解き明かすために, 符号化されたブラー変換器(BiT)を提案する。
マルチスケール残留スウィン変圧器ブロックに基づいて、両端の時間的監督と時間対称なアンサンブル戦略を導入する。
さらに,1対1のぼやけたビデオペアの最初の実世界のデータセットを収集するハイブリッドカメラシステムを設計する。
論文 参考訳(メタデータ) (2022-11-21T13:10:10Z) - Exploring Intra- and Inter-Video Relation for Surgical Semantic Scene
Segmentation [58.74791043631219]
セグメンテーション性能を高めるために,映像内および映像間関係を補完する新しいフレームワークSTswinCLを提案する。
本研究では,EndoVis18 ChallengeとCaDISデータセットを含む2つの公開手術ビデオベンチマークに対するアプローチを広く検証する。
実験により,従来の最先端手法を一貫して超越した提案手法の有望な性能を示す。
論文 参考訳(メタデータ) (2022-03-29T05:52:23Z) - Unifying Motion Deblurring and Frame Interpolation with Events [11.173687810873433]
フレームベースのカメラのスローシャッター速度と長時間露光は、しばしばフレーム間の情報の視覚的曖昧さと損失を引き起こし、キャプチャされたビデオの全体的な品質を劣化させる。
イベントの極めて低レイテンシを利用して、動きのぼやけを緩和し、中間フレーム予測を容易にする、ぼやけたビデオ強調のためのイベントベースモーションデブロアリングとフレーム拡張の統一フレームワークを提案する。
ぼやけたフレーム,潜入画像,イベントストリーム間の相互制約を探索することにより,実世界のぼやけたビデオやイベントによるネットワークトレーニングを可能にする,自己教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-23T03:43:12Z) - Wide and Narrow: Video Prediction from Context and Motion [54.21624227408727]
本稿では,これらの相補的属性を統合し,深層ネットワークを通した複雑なピクセルのダイナミックスを予測するフレームワークを提案する。
本研究では,非局所的な近隣表現を集約し,過去のフレーム上の文脈情報を保存するグローバルなコンテキスト伝搬ネットワークを提案する。
また,移動オブジェクトの動作をメモリに格納することで,適応的なフィルタカーネルを生成するローカルフィルタメモリネットワークを考案した。
論文 参考訳(メタデータ) (2021-10-22T04:35:58Z) - TimeLens: Event-based Video Frame Interpolation [54.28139783383213]
本稿では,合成法とフロー法の両方の利点を生かした,等価寄与法であるTime Lensを紹介する。
最先端のフレームベースおよびイベントベース手法よりもPSNRが最大5.21dB向上したことを示す。
論文 参考訳(メタデータ) (2021-06-14T10:33:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。