論文の概要: Event-based Video Frame Interpolation with Edge Guided Motion Refinement
- arxiv url: http://arxiv.org/abs/2404.18156v1
- Date: Sun, 28 Apr 2024 12:13:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 17:43:14.507665
- Title: Event-based Video Frame Interpolation with Edge Guided Motion Refinement
- Title(参考訳): エッジガイド型モーションリファインメントを用いたイベントベースビデオフレーム補間
- Authors: Yuhan Liu, Yongjian Deng, Hao Chen, Bochen Xie, Youfu Li, Zhen Yang,
- Abstract要約: 本稿では,イベント信号のエッジ特徴を効果的に活用するためのエンドツーエンドE-VFI学習手法を提案する。
提案手法にはエッジガイド・アテンテーティブ(EGA)モジュールが組み込まれており,アテンテーティブアグリゲーションによって推定された映像の動きを補正する。
合成データと実データの両方を用いた実験により,提案手法の有効性が示された。
- 参考スコア(独自算出の注目度): 28.331148083668857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video frame interpolation, the process of synthesizing intermediate frames between sequential video frames, has made remarkable progress with the use of event cameras. These sensors, with microsecond-level temporal resolution, fill information gaps between frames by providing precise motion cues. However, contemporary Event-Based Video Frame Interpolation (E-VFI) techniques often neglect the fact that event data primarily supply high-confidence features at scene edges during multi-modal feature fusion, thereby diminishing the role of event signals in optical flow (OF) estimation and warping refinement. To address this overlooked aspect, we introduce an end-to-end E-VFI learning method (referred to as EGMR) to efficiently utilize edge features from event signals for motion flow and warping enhancement. Our method incorporates an Edge Guided Attentive (EGA) module, which rectifies estimated video motion through attentive aggregation based on the local correlation of multi-modal features in a coarse-to-fine strategy. Moreover, given that event data can provide accurate visual references at scene edges between consecutive frames, we introduce a learned visibility map derived from event data to adaptively mitigate the occlusion problem in the warping refinement process. Extensive experiments on both synthetic and real datasets show the effectiveness of the proposed approach, demonstrating its potential for higher quality video frame interpolation.
- Abstract(参考訳): 連続ビデオフレーム間で中間フレームを合成する過程であるビデオフレーム補間は,イベントカメラを用いることで顕著な進歩を遂げた。
マイクロ秒レベルの時間分解能を持つこれらのセンサーは、正確なモーションキューを提供することで、フレーム間の情報ギャップを埋める。
しかし、現代のイベントベースビデオフレーム補間(E-VFI)技術は、イベントデータがマルチモーダルな特徴融合の間、シーンエッジの高信頼な特徴を主に供給しているという事実を無視することが多く、それによって光フロー推定やワープ精細化におけるイベント信号の役割を低下させる。
この見落としに対処するために,イベント信号のエッジ特徴を効率よく活用するエンドツーエンドのE-VFI学習手法(EGMR)を導入する。
提案手法では,マルチモーダル特徴の局所的相関に基づいて,暗黙の集約によって推定された映像の動きを補正するEdge Guided Attentive (EGA)モジュールを組み込んだ。
さらに,連続するフレーム間のシーンエッジにおいて,イベントデータが正確な視覚的参照を提供できることを考慮し,イベントデータから学習された可視マップを導入して,ワーピング精錬プロセスにおける閉塞問題を適応的に緩和する。
合成データセットと実データセットの両方に対する大規模な実験は、提案手法の有効性を示し、高品質なビデオフレーム補間の可能性を示している。
関連論文リスト
- CMTA: Cross-Modal Temporal Alignment for Event-guided Video Deblurring [44.30048301161034]
ビデオデブロアリングは、隣接するビデオフレームから情報を集めることで、モーションレッドビデオの復元結果の品質を高めることを目的としている。
1) フレーム内機能拡張は, 単一のぼやけたフレームの露出時間内で動作し, 2) フレーム間時間的特徴アライメントは, 重要な長期時間情報を対象のフレームに収集する。
提案手法は, 合成および実世界のデブロアリングデータセットを用いた広範囲な実験により, 最先端のフレームベースおよびイベントベース動作デブロアリング法より優れていることを示す。
論文 参考訳(メタデータ) (2024-08-27T10:09:17Z) - Motion-aware Latent Diffusion Models for Video Frame Interpolation [51.78737270917301]
隣接するフレーム間の動き推定は、動きのあいまいさを避ける上で重要な役割を担っている。
我々は、新しい拡散フレームワーク、動き認識潜在拡散モデル(MADiff)を提案する。
提案手法は,既存手法を著しく上回る最先端性能を実現する。
論文 参考訳(メタデータ) (2024-04-21T05:09:56Z) - Motion-Aware Video Frame Interpolation [49.49668436390514]
我々は、連続するフレームから中間光の流れを直接推定する動き対応ビデオフレーム補間(MA-VFI)ネットワークを導入する。
受容場が異なる入力フレームからグローバルな意味関係と空間的詳細を抽出するだけでなく、必要な計算コストと複雑さを効果的に削減する。
論文 参考訳(メタデータ) (2024-02-05T11:00:14Z) - Revisiting Event-based Video Frame Interpolation [49.27404719898305]
ダイナミックビジョンセンサーやイベントカメラは、ビデオフレームに豊富な補完情報を提供する。
イベントからの光の流れを推定することは、RGB情報より間違いなく困難である。
イベントベースの中間フレーム合成を複数の単純化段階において漸進的に行う分割・対数戦略を提案する。
論文 参考訳(メタデータ) (2023-07-24T06:51:07Z) - Continuous Space-Time Video Super-Resolution Utilizing Long-Range
Temporal Information [48.20843501171717]
本稿では,任意のフレームレートと空間解像度に変換可能な連続ST-VSR(CSTVSR)手法を提案する。
本稿では,提案アルゴリズムの柔軟性が向上し,各種データセットの性能が向上することを示す。
論文 参考訳(メタデータ) (2023-02-26T08:02:39Z) - Event-Based Frame Interpolation with Ad-hoc Deblurring [68.97825675372354]
本稿では,入力ビデオのアドホックを損なうイベントベースフレームの一般的な手法を提案する。
我々のネットワークは、フレーム上の最先端の手法、単一画像のデブロアリング、および共同作業のデブロアリングを一貫して上回ります。
コードとデータセットは公開されます。
論文 参考訳(メタデータ) (2023-01-12T18:19:00Z) - TimeLens: Event-based Video Frame Interpolation [54.28139783383213]
本稿では,合成法とフロー法の両方の利点を生かした,等価寄与法であるTime Lensを紹介する。
最先端のフレームベースおよびイベントベース手法よりもPSNRが最大5.21dB向上したことを示す。
論文 参考訳(メタデータ) (2021-06-14T10:33:47Z) - FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation [97.99012124785177]
FLAVRは、3D空間時間の畳み込みを使用して、ビデオフレームのエンドツーエンドの学習と推論を可能にする柔軟で効率的なアーキテクチャです。
FLAVRは、アクション認識、光フロー推定、モーション拡大のための有用な自己解釈タスクとして役立つことを実証します。
論文 参考訳(メタデータ) (2020-12-15T18:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。