論文の概要: CMTA: Cross-Modal Temporal Alignment for Event-guided Video Deblurring
- arxiv url: http://arxiv.org/abs/2408.14930v2
- Date: Wed, 28 Aug 2024 09:50:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 12:58:09.284703
- Title: CMTA: Cross-Modal Temporal Alignment for Event-guided Video Deblurring
- Title(参考訳): CMTA:イベント誘導ビデオのタイムアライメント
- Authors: Taewoo Kim, Hoonhee Cho, Kuk-Jin Yoon,
- Abstract要約: ビデオデブロアリングは、隣接するビデオフレームから情報を集めることで、モーションレッドビデオの復元結果の品質を高めることを目的としている。
1) フレーム内機能拡張は, 単一のぼやけたフレームの露出時間内で動作し, 2) フレーム間時間的特徴アライメントは, 重要な長期時間情報を対象のフレームに収集する。
提案手法は, 合成および実世界のデブロアリングデータセットを用いた広範囲な実験により, 最先端のフレームベースおよびイベントベース動作デブロアリング法より優れていることを示す。
- 参考スコア(独自算出の注目度): 44.30048301161034
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Video deblurring aims to enhance the quality of restored results in motion-blurred videos by effectively gathering information from adjacent video frames to compensate for the insufficient data in a single blurred frame. However, when faced with consecutively severe motion blur situations, frame-based video deblurring methods often fail to find accurate temporal correspondence among neighboring video frames, leading to diminished performance. To address this limitation, we aim to solve the video deblurring task by leveraging an event camera with micro-second temporal resolution. To fully exploit the dense temporal resolution of the event camera, we propose two modules: 1) Intra-frame feature enhancement operates within the exposure time of a single blurred frame, iteratively enhancing cross-modality features in a recurrent manner to better utilize the rich temporal information of events, 2) Inter-frame temporal feature alignment gathers valuable long-range temporal information to target frames, aggregating sharp features leveraging the advantages of the events. In addition, we present a novel dataset composed of real-world blurred RGB videos, corresponding sharp videos, and event data. This dataset serves as a valuable resource for evaluating event-guided deblurring methods. We demonstrate that our proposed methods outperform state-of-the-art frame-based and event-based motion deblurring methods through extensive experiments conducted on both synthetic and real-world deblurring datasets. The code and dataset are available at https://github.com/intelpro/CMTA.
- Abstract(参考訳): ビデオデブロアリングは、隣接するビデオフレームから情報を効果的に集めて、1つのぼやけたフレームで不足したデータを補うことで、モーションブルビデオの復元結果の品質を高めることを目的としている。
しかし、連続的に激しい動きのぼやけた状況に直面した場合、フレームベースのビデオデブロワー法は、隣接するビデオフレーム間の正確な時間対応を見出すことができず、性能が低下する。
この制限に対処するために,イベントカメラをマイクロ秒時間分解能で活用することで,映像の劣化を解消することを目的とする。
イベントカメラの高密度時間分解能をフル活用するために,2つのモジュールを提案する。
1)フレーム内特徴強調は、1つのぼやけたフレームの露光時間内に動作し、イベントの豊富な時間情報をよりよく活用するために、反復的にクロスモダリティ特徴を反復的に強化する。
2) フレーム間時間的特徴アライメントは、イベントの利点を生かしたシャープな特徴を集約し、重要な長距離時間情報を対象のフレームに収集する。
さらに,実世界のぼやけたRGBビデオ,対応するシャープビデオ,イベントデータからなる新しいデータセットを提案する。
このデータセットは、イベント誘導型デブロアリングメソッドを評価するための貴重なリソースとして機能する。
提案手法は, 合成および実世界のデブロアリングデータセットを用いた広範囲な実験により, 最先端のフレームベースおよびイベントベース動作デブロアリング法より優れていることを示す。
コードとデータセットはhttps://github.com/intelpro/CMTAで公開されている。
関連論文リスト
- Event-based Video Frame Interpolation with Edge Guided Motion Refinement [28.331148083668857]
本稿では,イベント信号のエッジ特徴を効果的に活用するためのエンドツーエンドE-VFI学習手法を提案する。
提案手法にはエッジガイド・アテンテーティブ(EGA)モジュールが組み込まれており,アテンテーティブアグリゲーションによって推定された映像の動きを補正する。
合成データと実データの両方を用いた実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-04-28T12:13:34Z) - Joint Video Multi-Frame Interpolation and Deblurring under Unknown
Exposure Time [101.91824315554682]
本研究では,より現実的で挑戦的なタスク – 複数フレームのジョイントビデオと,未知の露光時間下での劣化 – を野心的に目標とする。
我々はまず,入力されたぼやけたフレームから露出認識表現を構築するために,教師付きコントラスト学習の変種を採用する。
次に、プログレッシブ露光適応型畳み込みと動き改善による露出と動きの表現に基づいて、映像再構成ネットワークを構築した。
論文 参考訳(メタデータ) (2023-03-27T09:43:42Z) - Event-Based Frame Interpolation with Ad-hoc Deblurring [68.97825675372354]
本稿では,入力ビデオのアドホックを損なうイベントベースフレームの一般的な手法を提案する。
我々のネットワークは、フレーム上の最先端の手法、単一画像のデブロアリング、および共同作業のデブロアリングを一貫して上回ります。
コードとデータセットは公開されます。
論文 参考訳(メタデータ) (2023-01-12T18:19:00Z) - Towards Interpretable Video Super-Resolution via Alternating
Optimization [115.85296325037565]
低フレームのぼかしビデオから高フレームの高解像度のシャープビデオを生成することを目的とした実時間ビデオ超解法(STVSR)問題について検討する。
本稿では,モデルベースと学習ベースの両方の手法を用いて,解釈可能なSTVSRフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-21T21:34:05Z) - Unifying Motion Deblurring and Frame Interpolation with Events [11.173687810873433]
フレームベースのカメラのスローシャッター速度と長時間露光は、しばしばフレーム間の情報の視覚的曖昧さと損失を引き起こし、キャプチャされたビデオの全体的な品質を劣化させる。
イベントの極めて低レイテンシを利用して、動きのぼやけを緩和し、中間フレーム予測を容易にする、ぼやけたビデオ強調のためのイベントベースモーションデブロアリングとフレーム拡張の統一フレームワークを提案する。
ぼやけたフレーム,潜入画像,イベントストリーム間の相互制約を探索することにより,実世界のぼやけたビデオやイベントによるネットワークトレーニングを可能にする,自己教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-23T03:43:12Z) - Event-guided Deblurring of Unknown Exposure Time Videos [31.992673443516235]
イベントカメラは、高時間分解能で見かけの動きを捉えることができる。
本稿では,イベント特徴を選択的に利用するための新しい露光時間に基づくイベント選択モジュールを提案する。
本手法は最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-12-13T19:46:17Z) - TimeLens: Event-based Video Frame Interpolation [54.28139783383213]
本稿では,合成法とフロー法の両方の利点を生かした,等価寄与法であるTime Lensを紹介する。
最先端のフレームベースおよびイベントベース手法よりもPSNRが最大5.21dB向上したことを示す。
論文 参考訳(メタデータ) (2021-06-14T10:33:47Z) - Motion-blurred Video Interpolation and Extrapolation [72.3254384191509]
本稿では,映像から鮮明なフレームをエンドツーエンドに切り離し,補間し,外挿する新しい枠組みを提案する。
予測フレーム間の時間的コヒーレンスを確保し,潜在的な時間的あいまいさに対処するために,単純で効果的なフローベースルールを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:18:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。