論文の概要: Towards Dependable Autonomous Systems Based on Bayesian Deep Learning
Components
- arxiv url: http://arxiv.org/abs/2301.05297v1
- Date: Thu, 12 Jan 2023 21:21:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-16 15:12:49.715047
- Title: Towards Dependable Autonomous Systems Based on Bayesian Deep Learning
Components
- Title(参考訳): ベイズ深層学習成分に基づく信頼可能な自律システムに向けて
- Authors: Fabio Arnez, Huascar Espinoza, Ansgar Radermacher, Fran\c{c}ois
Terrier
- Abstract要約: 自律航法のためのBDLシステムにおける不確実性伝播の効果について検討する。
提案手法により,最終タスクにおけるシステム性能をわずかに改善しながら,有用な不確実性推定を捉えることができる。
- 参考スコア(独自算出の注目度): 2.064612766965483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As autonomous systems increasingly rely on Deep Neural Networks (DNN) to
implement the navigation pipeline functions, uncertainty estimation methods
have become paramount for estimating confidence in DNN predictions. Bayesian
Deep Learning (BDL) offers a principled approach to model uncertainties in
DNNs. However, in DNN-based systems, not all the components use uncertainty
estimation methods and typically ignore the uncertainty propagation between
them. This paper provides a method that considers the uncertainty and the
interaction between BDL components to capture the overall system uncertainty.
We study the effect of uncertainty propagation in a BDL-based system for
autonomous aerial navigation. Experiments show that our approach allows us to
capture useful uncertainty estimates while slightly improving the system's
performance in its final task. In addition, we discuss the benefits,
challenges, and implications of adopting BDL to build dependable autonomous
systems.
- Abstract(参考訳): 自律システムは、ナビゲーションパイプライン機能を実装するためにディープニューラルネットワーク(DNN)にますます依存しているため、DNN予測の信頼性を推定するための不確実性推定手法が最重要になっている。
Bayesian Deep Learning (BDL)は、DNNにおける不確実性をモデル化するための原則的なアプローチを提供する。
しかし、DNNベースのシステムでは、全てのコンポーネントが不確実性推定法を使用しており、通常はそれらの間の不確実性伝播を無視しているわけではない。
本稿では,BDLコンポーネント間の不確実性と相互作用を考慮し,システム全体の不確実性を捉える手法を提案する。
自律航法のためのBDLシステムにおける不確実性伝播の効果について検討する。
実験により,本手法は最終課題におけるシステム性能をわずかに改善しつつ,有用な不確実性推定を捉えることができることが示された。
さらに、依存可能な自律システムを構築するためにbdlを採用することのメリット、課題、および影響について論じる。
関連論文リスト
- Edge AI Collaborative Learning: Bayesian Approaches to Uncertainty Estimation [0.0]
独立エージェントが遭遇するデータの空間的変動を考慮した学習結果における信頼度の決定に焦点をあてる。
協調マッピングタスクをシミュレートするために,Webotsプラットフォームを用いた3次元環境シミュレーションを実装した。
実験により,BNNは分散学習コンテキストにおける不確実性推定を効果的に支援できることが示された。
論文 参考訳(メタデータ) (2024-10-11T09:20:16Z) - Uncertainty Calibration with Energy Based Instance-wise Scaling in the Wild Dataset [23.155946032377052]
エネルギーモデルに基づく新しいインスタンスワイドキャリブレーション手法を提案する。
本手法は,ソフトマックス信頼性スコアの代わりにエネルギースコアを組み込むことにより,不確実性を考慮した適応的な検討を可能にする。
実験では,提案手法はスペクトル間のロバストな性能を一貫して維持することを示した。
論文 参考訳(メタデータ) (2024-07-17T06:14:55Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
本稿では,効率的かつ高精度な不確実性定量化を深層学習に基づく代理モデルに統合する手法を提案する。
本手法は,フォワード問題と逆問題の両方に対して,堅牢かつ効率的な不確実性定量化機能を備えたディープラーニングに基づく代理モデルを提案する。
提案手法は, 長期予測を含むシナリオに適合し, 拡張された自己回帰ロールアウトに対する不確かさの伝播に優れる。
論文 参考訳(メタデータ) (2024-02-13T11:22:59Z) - Uncertainty Quantification for Deep Neural Networks: An Empirical
Comparison and Usage Guidelines [4.987581730476023]
ディープニューラルネットワーク(DNN)は、複雑なデータを処理する必要がある大規模ソフトウェアシステムのコンポーネントとして、ますます利用されている。
不確実性推定によりスーパーバイザを実装するディープラーニングベースシステム(DLS)。
論文 参考訳(メタデータ) (2022-12-14T09:12:30Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - A Variational Bayesian Approach to Learning Latent Variables for
Acoustic Knowledge Transfer [55.20627066525205]
本稿では,ディープニューラルネットワーク(DNN)モデルにおける潜伏変数の分布を学習するための変分ベイズ(VB)アプローチを提案する。
我々の提案するVBアプローチは,ターゲットデバイスにおいて良好な改善が得られ,しかも,13の最先端知識伝達アルゴリズムを一貫して上回っている。
論文 参考訳(メタデータ) (2021-10-16T15:54:01Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
自律運転における安全クリティカル画像セグメンテーションを実現するために、不確実性推定をどのように活用できるかを示す。
相似性関数によって測定された不一致予測に基づく新しい不確実性尺度を導入する。
本研究では,提案手法が競合手法よりも推論時間において計算集約性が低いことを示す。
論文 参考訳(メタデータ) (2021-05-28T09:23:05Z) - Fail-Safe Execution of Deep Learning based Systems through Uncertainty
Monitoring [4.56877715768796]
フェールセーフなディープラーニングベースシステム(DLS)は、スーパーバイザーによってDNNの障害を処理する。
本稿では,DNNの不確実性推定器を用いて,そのようなスーパーバイザを実装する手法を提案する。
通常のtf.keras DNNに対する不確かさを透過的に推定できるツールUNCERTAINTY-WIZARDについて述べる。
論文 参考訳(メタデータ) (2021-02-01T15:22:54Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
人間のループシステムにおけるモンテカルロのドロップアウトに基づく不確実性対策により,システムの透明性と性能が向上することを示す。
シミュレーション研究により、不確実性に基づく「ループ内人間システム」は、様々なレベルの人間の関与に対する性能を高めることが示されている。
論文 参考訳(メタデータ) (2020-07-14T15:47:37Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
リカレントニューラルネットワーク(RNN)は、シーケンシャルおよび時系列データのモデリングに有効である。
RNNにおける既存の不確実性定量化のアプローチは、主にベイズ法に基づいている。
a)モデルトレーニングに干渉せず、その精度を損なうことなく、(b)任意のRNNアーキテクチャに適用し、(c)推定不確かさ間隔に関する理論的カバレッジ保証を提供する。
論文 参考訳(メタデータ) (2020-06-20T22:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。