論文の概要: AAAI 2022 Fall Symposium: Lessons Learned for Autonomous Assessment of
Machine Abilities (LLAAMA)
- arxiv url: http://arxiv.org/abs/2301.05384v1
- Date: Fri, 13 Jan 2023 03:47:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-16 14:27:25.310249
- Title: AAAI 2022 Fall Symposium: Lessons Learned for Autonomous Assessment of
Machine Abilities (LLAAMA)
- Title(参考訳): AAAI 2022 Fall Symposium: 機械能力の自律的評価(LLAAMA)を学ぶ
- Authors: Nicholas Conlon, Aastha Acharya, Nisar Ahmed
- Abstract要約: 現代の民間と軍事のシステムは、洗練されたインテリジェントな自律機械の需要を生み出している。
これらの新しい形のインテリジェントな自律性は、運用意図のいつ/どのようにコミュニケーションし、自律エージェントの実際の能力を評価することが全体的なパフォーマンスに影響を及ぼすかという疑問を提起する。
このシンポジウムでは、インテリジェントな自律システムを自己評価し、割り当てられたタスクを効果的に実行する能力を伝える可能性について検討する。
- 参考スコア(独自算出の注目度): 1.157139586810131
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern civilian and military systems have created a demand for sophisticated
intelligent autonomous machines capable of operating in uncertain dynamic
environments. Such systems are realizable thanks in large part to major
advances in perception and decision-making techniques, which in turn have been
propelled forward by modern machine learning tools. However, these newer forms
of intelligent autonomy raise questions about when/how communication of the
operational intent and assessments of actual vs. supposed capabilities of
autonomous agents impact overall performance. This symposium examines the
possibilities for enabling intelligent autonomous systems to self-assess and
communicate their ability to effectively execute assigned tasks, as well as
reason about the overall limits of their competencies and maintain operability
within those limits. The symposium brings together researchers working in this
burgeoning area of research to share lessons learned, identify major
theoretical and practical challenges encountered so far, and potential avenues
for future research and real-world applications.
- Abstract(参考訳): 現代の民間および軍事システムは、不確定な動的環境で動作可能な高度な知的自律機械の需要を生み出した。
このようなシステムは、認識と意思決定技術の大きな進歩のおかげで実現可能であり、現代の機械学習ツールによって推進されてきた。
しかし、これらの新しい形のインテリジェントな自律性は、運用意図のコミュニケーションと、実際の自律エージェントの能力と想定される能力のアセスメントが全体的なパフォーマンスに与える影響について疑問を提起する。
本シンポジウムでは,知的自律システムを自己評価し,割り当てられたタスクを効果的に遂行する能力と,その能力の全体的な限界を判断し,その限界内での運用性を維持する可能性について検討する。
このシンポジウムは、この急成長する研究領域で働く研究者を集結させ、学んだ教訓を共有し、これまで遭遇した主要な理論と実践上の課題を特定し、将来の研究と現実の応用への道筋を開く。
関連論文リスト
- WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
大型言語モデル(LLM)は人間のような知性を模倣することができる。
WorkArena++は、Webエージェントの計画、問題解決、論理的/論理的推論、検索、コンテキスト的理解能力を評価するように設計されている。
論文 参考訳(メタデータ) (2024-07-07T07:15:49Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - A Survey on Robotics with Foundation Models: toward Embodied AI [30.999414445286757]
近年のコンピュータビジョン,自然言語処理,マルチモーダリティ学習の進歩は,基礎モデルが特定のタスクに対して超人的能力を持つことを示している。
この調査は、ロボット工学の基礎モデルの包括的で最新の概要を提供し、自律的な操作に焦点を当て、高レベルの計画と低レベルの制御を包含することを目的としている。
論文 参考訳(メタデータ) (2024-02-04T07:55:01Z) - Towards Knowledge-driven Autonomous Driving [37.003908817857095]
本稿では,新しい知識駆動型自動運転技術について考察する。
我々の調査は、現在の自動運転システムの限界を浮き彫りにしている。
認知、一般化、生涯学習の能力を備えた知識駆動型手法は、これらの課題を克服するための有望な方法として浮上する。
論文 参考訳(メタデータ) (2023-12-07T14:17:17Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
固有のモチベーションは、目標間のトレーニング時間を適切に割り当てるタスクに依存しないシグナルを生成することが証明されている。
内在的に動機付けられたオープンエンドラーニングの分野におけるほとんどの研究は、目標が互いに独立しているシナリオに焦点を当てているが、相互依存タスクの自律的な獲得を研究するのはごくわずかである。
特に,タスク間の関係に関する情報をアーキテクチャのより高レベルなレベルで組み込むことの重要性を示す。
そして、自律的に取得したシーケンスを格納する新しい学習層を追加することで、前者を拡張する新しいシステムであるH-GRAILを紹介する。
論文 参考訳(メタデータ) (2022-05-16T10:43:01Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
記事は、インテリジェンスが機械学習技術の進歩の鍵を握っていると主張している。
私たちは、インテリジェンスを具体化するための課題と機会を強調します。
本稿では,ロボット学習の最先端性を著しく向上させる研究の方向性を提案する。
論文 参考訳(メタデータ) (2021-10-28T16:04:01Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
ロボット学習のためのプラットフォームとしてデュアルアーム設定を提案する。
このセットアップの潜在的なメリットと、追求できる課題と研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-10-15T12:51:57Z) - From SLAM to Situational Awareness: Challenges and Survey [0.0]
複雑なミッションを効率的に安全に遂行する移動ロボットの能力は、環境に関する知識によって制限される。
高度な推論、意思決定、実行スキルにより、知的エージェントは未知の環境で自律的に行動することができる。
本稿では,現状のロボット工学アルゴリズムを網羅し,状況認識の諸側面について考察する。
論文 参考訳(メタデータ) (2021-10-01T09:00:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。