論文の概要: Human-Centered AI and Autonomy in Robotics: Insights from a Bibliometric Study
- arxiv url: http://arxiv.org/abs/2504.19848v1
- Date: Mon, 28 Apr 2025 14:45:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.476289
- Title: Human-Centered AI and Autonomy in Robotics: Insights from a Bibliometric Study
- Title(参考訳): 人間中心型AIとロボティクスの自律性:バイオロメトリによる考察
- Authors: Simona Casini, Pietro Ducange, Francesco Marcelloni, Lorenzo Pollini,
- Abstract要約: Human-Centered AI(HCAI)は、人間の制御と自動化のバランスを図る。
本稿では,SciMAT と VOSViewer を用いた知的自律ロボットシステムの書誌分析を行った。
この発見は、学術的傾向、新しいトピック、そして自己適応型ロボット行動におけるAIの役割を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 3.794859469462058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of autonomous robotic systems offers significant potential for performing complex tasks with precision and consistency. Recent advances in Artificial Intelligence (AI) have enabled more capable intelligent automation systems, addressing increasingly complex challenges. However, this progress raises questions about human roles in such systems. Human-Centered AI (HCAI) aims to balance human control and automation, ensuring performance enhancement while maintaining creativity, mastery, and responsibility. For real-world applications, autonomous robots must balance task performance with reliability, safety, and trustworthiness. Integrating HCAI principles enhances human-robot collaboration and ensures responsible operation. This paper presents a bibliometric analysis of intelligent autonomous robotic systems, utilizing SciMAT and VOSViewer to examine data from the Scopus database. The findings highlight academic trends, emerging topics, and AI's role in self-adaptive robotic behaviour, with an emphasis on HCAI architecture. These insights are then projected onto the IBM MAPE-K architecture, with the goal of identifying how these research results map into actual robotic autonomous systems development efforts for real-world scenarios.
- Abstract(参考訳): 自律型ロボットシステムの開発は、精度と整合性を持った複雑なタスクを実行する大きな可能性を秘めている。
人工知能(AI)の最近の進歩により、より有能なインテリジェントな自動化システムが実現され、ますます複雑な課題に対処している。
しかし、この進歩はそのようなシステムにおける人間の役割に関する疑問を提起する。
Human-Centered AI(HCAI)は、人間のコントロールと自動化のバランスを保ち、創造性、熟達、責任を維持しながらパフォーマンスの向上を保証することを目的としている。
現実世界のアプリケーションでは、自律ロボットはタスクパフォーマンスと信頼性、安全性、信頼性のバランスをとる必要がある。
HCAI原則の統合は、人間とロボットのコラボレーションを強化し、責任ある運用を保証する。
本稿では,SciMAT と VOSViewer を用いた知的自律ロボットシステムの書誌分析を行い,Scoopus データベースからのデータを調べる。
この発見は、HCAIアーキテクチャに重点を置いて、学術的トレンド、新興トピック、自己適応型ロボット行動におけるAIの役割を強調している。
これらの知見はIBM MAPE-Kアーキテクチャに投影され、これらの研究結果が実際のシナリオのための実際の自律システム開発活動にどのようにマッピングされるかを特定することを目的としている。
関連論文リスト
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - Generative AI and Its Impact on Personalized Intelligent Tutoring Systems [0.0]
生成AIは、動的コンテンツ生成、リアルタイムフィードバック、適応学習経路を通じてパーソナライズされた教育を可能にする。
報告では、自動質問生成、カスタマイズされたフィードバック機構、対話システムなどの重要な応用について検討する。
今後の方向性は、マルチモーダルAI統合の潜在的な進歩、学習システムにおける感情的知性、そしてAI駆動型教育の倫理的意味を強調する。
論文 参考訳(メタデータ) (2024-10-14T16:01:01Z) - Human-Centered Automation [0.3626013617212666]
この論文は、自動化システムの設計と開発におけるユーザニーズと嗜好を優先するHCA(Human-Centered Automation)の新たな領域について論じている。
本稿は、既存の自動化アプローチの限界、AIとRPAの統合の課題、生産性、イノベーション、そしてこれらの技術へのアクセスを民主化するための人間中心の自動化の利点について論じる。
論文 参考訳(メタデータ) (2024-05-24T22:12:28Z) - Embodied Neuromorphic Artificial Intelligence for Robotics: Perspectives, Challenges, and Research Development Stack [7.253801704452419]
スパイキングニューラルネットワーク(SNN)によるニューロモルフィックコンピューティングの最近の進歩は、ロボット工学の具体的インテリジェンスを可能にする可能性を実証している。
本稿では, ロボットシステムにおいて, エンボディ型ニューロモーフィックAIを実現する方法について考察する。
論文 参考訳(メタデータ) (2024-04-04T09:52:22Z) - Towards Building AI-CPS with NVIDIA Isaac Sim: An Industrial Benchmark
and Case Study for Robotics Manipulation [18.392301524812645]
代表的サイバー物理システム(CPS)として、ロボットマニピュレータは様々な学術研究や産業プロセスで広く採用されている。
ロボット操作の最近の研究は、適応性と性能を向上させるために人工知能(AI)アプローチをコントローラとして採用し始めている。
本稿では,ロボット操作のための公開産業ベンチマークを提案する。
論文 参考訳(メタデータ) (2023-07-31T18:21:45Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
自己指導型学習は、制御戦略を学ぶのに必要な人間のアノテーションとエンジニアリングの労力を減らす可能性がある。
我々の研究は、強化学習(RL)自体が自己監督的な問題であることを示す先行研究に基づいている。
コントラスト学習に基づく自己教師付きRLアルゴリズムは,実世界の画像に基づくロボット操作タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2023-06-06T01:36:56Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
我々は世界モデルと予測符号化の2つの概念に焦点を当てる。
神経科学において、予測符号化は、脳がその入力を継続的に予測し、その環境における自身のダイナミクスと制御行動のモデル化に適応するように提案する。
論文 参考訳(メタデータ) (2023-01-14T06:38:14Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022 [0.0]
RAISAワークショップは、堅牢な人工知能(AI)と機械学習(ML)システムの研究、開発、応用に焦点を当てる。
特定のMLアルゴリズムに関してロバストネスを研究するのではなく、システムアーキテクチャのレベルでロバストネスの保証を検討することを目的としています。
論文 参考訳(メタデータ) (2022-02-10T01:15:50Z) - On the Philosophical, Cognitive and Mathematical Foundations of
Symbiotic Autonomous Systems (SAS) [87.3520234553785]
共生自律システム(SAS)は、自律的な集団知能を示す高度なインテリジェントおよび認知システムです。
この研究は、知性、認知、コンピュータ、システム科学の最新の進歩に根ざしたSASの理論的枠組みを示す。
論文 参考訳(メタデータ) (2021-02-11T05:44:25Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。