論文の概要: Building a Fuel Moisture Model for the Coupled Fire-Atmosphere Model
WRF-SFIRE from Data: From Kalman Filters to Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2301.05427v1
- Date: Fri, 13 Jan 2023 07:56:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-16 14:27:08.873749
- Title: Building a Fuel Moisture Model for the Coupled Fire-Atmosphere Model
WRF-SFIRE from Data: From Kalman Filters to Recurrent Neural Networks
- Title(参考訳): データからの火力-大気モデルwrf-sfireのための燃料水分モデルの構築:カルマンフィルタからリカレントニューラルネットワークへ
- Authors: J. Mandel, J. Hirschi, A. K. Kochanski, A. Farguell, J. Haley, D. V.
Mallia, B. Shaddy, A. A. Oberai, and K. A. Hilburn
- Abstract要約: WRF-SFIREとそのワークフローシステムWRFxにおける現在の燃料水分量(FMC)サブシステムは、時間ラグ微分方程式モデルを用いている。
モデルとカルマンフィルタからなるシステムにおけるデータフローは、リカレントニューラルネットワーク(RNN)におけるデータフローと同一であると解釈できる。
標準AIアプローチは妥当な解に収束しなかったため、微分方程式の数値解法となるために考案された特殊初期重み付きRNNを事前訓練する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The current fuel moisture content (FMC) subsystems in WRF-SFIRE and its
workflow system WRFx use a time-lag differential equation model with
assimilation of data from FMC sensors on Remote Automated Weather Stations
(RAWS) by the extended augmented Kalman filter. But the quality of the result
is constrained by the limitations of the model and of the Kalman filter. We
observe that the data flow in a system consisting of a model and the Kalman
filter can be interpreted to be the same as the data flow in a recurrent neural
network (RNN). Thus, instead of building more sophisticated models and data
assimilation methods, we want to train a RNN to approximate the dynamics of the
response of the FMC sensor to a time series of environmental data. Because
standard AI approaches did not converge to reasonable solutions, we pre-train
the RNN with special initial weights devised to turn it into a numerical solver
of the differential equation. We then allow the AI training machinery to
optimize the RNN weights to fit the data better. We illustrate the method on an
example of a time series of 10h-FMC from RAWS and weather data from the
Real-Time Mesoscale Analysis (RTMA).
- Abstract(参考訳): WRF-SFIREの現在の燃料水分量(FMC)サブシステムとそのワークフローシステムであるWRFxは、拡張されたカルマンフィルタにより遠隔自動気象観測装置(RAWS)上のFMCセンサからのデータと同化した時間ラグ微分方程式モデルを用いている。
しかし、結果の品質はモデルとカルマンフィルタの制限によって制約される。
モデルとカルマンフィルタからなるシステムにおけるデータフローは、リカレントニューラルネットワーク(RNN)におけるデータフローと同一であると解釈できる。
したがって、より洗練されたモデルやデータ同化法を構築する代わりに、FMCセンサの時系列環境データに対する応答のダイナミクスを近似するためにRNNを訓練したい。
標準AIアプローチは妥当な解に収束しなかったため、微分方程式の数値解法となるために考案された特殊初期重み付きRNNを事前訓練する。
そして、AIトレーニング機械がRNN重量を最適化してデータに合うようにします。
本手法は,実時間メソスケール解析(rtma)による生データと気象データから10h-fmcの時系列を例に示す。
関連論文リスト
- Data-Augmented Predictive Deep Neural Network: Enhancing the extrapolation capabilities of non-intrusive surrogate models [0.5735035463793009]
本稿では、カーネル動的モード分解(KDMD)を用いて、畳み込みオートエンコーダ(CAE)のエンコーダ部が生成する潜伏空間のダイナミクスを進化させる新しいディープラーニングフレームワークを提案する。
KDMD-decoder-extrapolated dataを元のデータセットに追加した後、この拡張データを用いてフィードフォワードディープニューラルネットワークと共にCAEをトレーニングする。
トレーニングされたネットワークは、トレーニング外のパラメータサンプルでトレーニング時間間隔外の将来の状態を予測できる。
論文 参考訳(メタデータ) (2024-10-17T09:26:14Z) - AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Enhancing Data-Assimilation in CFD using Graph Neural Networks [0.0]
本稿では,グラフニューラルネットワーク(GNN)モデルによる随伴最適化に基づく,流体力学に応用されたデータ同化のための新しい機械学習手法を提案する。
我々は,有限要素法(FEM)の解法に基づく直接数値シミュレーションを用いて,GNNモデルと解法の間の2次元のインターフェースにより,GNNの予測をFEM解析の処理後ステップに組み込むことができることを示す。
論文 参考訳(メタデータ) (2023-11-29T19:11:40Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
本稿では,密度推定のための生成モデルを訓練するためのフレームワークを提案する。
スコアベース拡散モデルを用いてラベル付きデータを生成する。
ラベル付きデータが生成されると、シンプルな完全に接続されたニューラルネットワークをトレーニングして、教師付き方法で生成モデルを学ぶことができます。
論文 参考訳(メタデータ) (2023-10-22T23:56:19Z) - Neural Differential Recurrent Neural Network with Adaptive Time Steps [11.999568208578799]
隠れ状態の時間的発達を表すためにニューラルODEを用いるRNN-ODE-Adapと呼ばれるRNNベースのモデルを提案する。
我々は、データの変化の急激さに基づいて時間ステップを適応的に選択し、「スパイクのような」時系列に対してより効率的にモデルを訓練する。
論文 参考訳(メタデータ) (2023-06-02T16:46:47Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
Dynamics [84.18625250574853]
KalmanNetは、データから学習し、非線形力学の下でKalmanフィルタを実行するリアルタイム状態推定器である。
我々は、KalmanNetが非線形性とモデルミスマッチを克服し、古典的なフィルタリング手法より優れていることを数値的に示す。
論文 参考訳(メタデータ) (2021-07-21T12:26:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。