論文の概要: A survey and taxonomy of loss functions in machine learning
- arxiv url: http://arxiv.org/abs/2301.05579v1
- Date: Fri, 13 Jan 2023 14:38:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-16 15:02:32.182943
- Title: A survey and taxonomy of loss functions in machine learning
- Title(参考訳): 機械学習における損失関数の探索と分類
- Authors: Lorenzo Ciampiconi, Adam Elwood, Marco Leonardi, Ashraf Mohamed,
Alessandro Rozza
- Abstract要約: ほとんどの最先端の機械学習技術は、損失関数の最適化を中心に進化している。
この調査は、初心者と高度な機械学習実践者の両方にとって最も重要な損失関数の参照を提供することを目的としている。
- 参考スコア(独自算出の注目度): 60.41650195728953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most state-of-the-art machine learning techniques revolve around the
optimisation of loss functions. Defining appropriate loss functions is
therefore critical to successfully solving problems in this field. We present a
survey of the most commonly used loss functions for a wide range of different
applications, divided into classification, regression, ranking, sample
generation and energy based modelling. Overall, we introduce 33 different loss
functions and we organise them into an intuitive taxonomy. Each loss function
is given a theoretical backing and we describe where it is best used. This
survey aims to provide a reference of the most essential loss functions for
both beginner and advanced machine learning practitioners.
- Abstract(参考訳): 最先端の機械学習技術の多くは、損失関数の最適化に力を入れている。
したがって、適切な損失関数を定義することは、この分野の問題を解決するのに不可欠である。
本稿では, 分類, 回帰, ランキング, サンプル生成, エネルギーベースモデリングに分けて, 幅広い用途において最もよく使われている損失関数について調査する。
全体として、33の異なる損失関数を導入し、直感的な分類に整理する。
各損失関数には理論的裏付けが与えられ、最もよく使われている場所を記述する。
この調査は、初心者と高度な機械学習実践者の両方にとって最も重要な損失関数の参照を提供することを目的としている。
関連論文リスト
- Fast and Efficient Local Search for Genetic Programming Based Loss
Function Learning [12.581217671500887]
本稿では,タスクとモデルに依存しない損失関数学習のためのメタラーニングフレームワークを提案する。
その結果, 学習した損失関数は, 収束性, サンプル効率, グラフ化, コンピュータビジョン, 自然言語処理問題に対する推論性能の向上をもたらすことがわかった。
論文 参考訳(メタデータ) (2024-03-01T02:20:04Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
我々は、閉形式力学を解析するための数学的機会を提供する、簡潔な損失関数であるアンヒンジド・ロスを導入する。
アンヒンジされた損失は、時間変化学習率や特徴正規化など、より実践的なテクニックを検討することができる。
論文 参考訳(メタデータ) (2023-12-13T02:11:07Z) - Loss Functions in the Era of Semantic Segmentation: A Survey and Outlook [11.119967679567587]
ロス関数は、ディープラーニングベースのセグメンテーションアルゴリズムの開発に不可欠である。
画像分割において、これらの損失関数がどのようにカスタマイズされ、どのように活用されるかについて、新しい分類法とレビューを提供する。
本稿では,現在の課題を特定し,今後の研究機会を明らかにすることで,このレビューを締めくくる。
論文 参考訳(メタデータ) (2023-12-08T22:06:05Z) - RoBoSS: A Robust, Bounded, Sparse, and Smooth Loss Function for
Supervised Learning [0.0]
そこで本研究では,教師あり学習のための,頑健で,有界で,スパースで,スムーズなロス関数(RoBoSS)を提案する。
未確認データの一般化のために,$mathcalL_rbss$-SVMという新しいロバストアルゴリズムを導入する。
提案した$mathcalL_rbss$-SVM を実世界の UCI と KEEL のデータセットで18ドルで評価した。
論文 参考訳(メタデータ) (2023-09-05T13:59:50Z) - Loss Functions and Metrics in Deep Learning [0.0]
我々は、多くの異なるタイプのディープラーニングタスクで使用される最も一般的な損失関数とメトリクスの包括的概要を提供する。
本稿では,各損失とメトリクスの式を導入し,その強度と限界について考察し,これらの手法がディープラーニングの様々な問題に適用できる方法について述べる。
論文 参考訳(メタデータ) (2023-07-05T23:53:55Z) - Xtreme Margin: A Tunable Loss Function for Binary Classification
Problems [0.0]
本稿では,新しい損失関数 Xtreme Margin の損失関数について概説する。
二進的クロスエントロピーやヒンジ損失関数とは異なり、この損失関数は研究者や実践者がトレーニングプロセスに柔軟性をもたらす。
論文 参考訳(メタデータ) (2022-10-31T22:39:32Z) - AutoLoss-Zero: Searching Loss Functions from Scratch for Generic Tasks [78.27036391638802]
AutoLoss-Zeroは、ジェネリックタスクのスクラッチから損失関数を検索する最初のフレームワークである。
探索効率を向上させるために、損失低減プロトコルと勾配等価性チェック戦略を開発する。
様々なコンピュータビジョンタスクにおける実験により、検索損失関数は既存の損失関数と同等かそれ以上かが示されている。
論文 参考訳(メタデータ) (2021-03-25T17:59:09Z) - Loss Function Discovery for Object Detection via Convergence-Simulation
Driven Search [101.73248560009124]
本稿では,効率的な収束シミュレーションによる進化的探索アルゴリズムCSE-Autolossを提案する。
一般的な検出器上での損失関数探索の広範囲な評価を行い、探索された損失の優れた一般化能力を検証した。
実験の結果, 2段検出器と1段検出器のmAPでは, 最適損失関数の組み合わせが1.1%と0.8%を上回っていることがわかった。
論文 参考訳(メタデータ) (2021-02-09T08:34:52Z) - Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation [56.343646789922545]
そこで本研究では,各計量に対する相異なるサロゲート損失を探索することにより,計量固有損失関数の設計を自動化することを提案する。
PASCAL VOCとCityscapesの実験では、探索されたサロゲート損失は手動で設計した損失関数よりも優れていた。
論文 参考訳(メタデータ) (2020-10-15T17:59:08Z) - Loss Function Search for Face Recognition [75.79325080027908]
最適な候補を自動的に獲得する報酬誘導探索法を開発した。
種々の顔認証ベンチマークの実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-07-10T03:40:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。