Large-scale sparse wavefunction circuit simulator for applications with
the variational quantum eigensolver
- URL: http://arxiv.org/abs/2301.05726v1
- Date: Fri, 13 Jan 2023 19:03:21 GMT
- Title: Large-scale sparse wavefunction circuit simulator for applications with
the variational quantum eigensolver
- Authors: J. Wayne Mullinax and Norm M. Tubman
- Abstract summary: We show that purely classical resources can be used to optimize quantum circuits in an approximate but robust manner.
We demonstrate this with a unitary coupled cluster ansatz on various molecules up to 64 qubits with tens of thousands of variational parameters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The standard paradigm for state preparation on quantum computers for the
simulation of physical systems in the near term has been widely explored with
different algorithmic methods. One such approach is the optimization of
parameterized circuits, but this becomes increasingly challenging with circuit
size. As a consequence, the utility of large-scale circuit optimization is
relatively unknown. In this work we demonstrate that purely classical resources
can be used to optimize quantum circuits in an approximate but robust manner
such that we can bridge the resources that we have from high performance
computing and see a direct transition to quantum advantage. We show this
through sparse wavefunction circuit solvers, which we detail here, and
demonstrate a region of efficient classic simulation. With such tools, we can
avoid the many problems that plague circuit optimization for circuits with
hundreds of qubits using only practical and reasonable classical computing
resources. These tools allow us to probe the true benefit of variational
optimization approaches on quantum computers, thus opening the window to what
can be expected with near term hardware for physical systems. We demonstrate
this with a unitary coupled cluster ansatz on various molecules up to 64 qubits
with tens of thousands of variational parameters.
Related papers
- Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
Variational quantum-classical hybrid algorithms are seen as a promising strategy for solving practical problems on quantum computers in the near term.
Here, we introduce the fast-and-slow algorithm, which uses gradients to identify a promising region in Bayesian space.
Our results move variational quantum algorithms closer to their envisioned applications in quantum chemistry, optimization, and quantum simulation problems.
arXiv Detail & Related papers (2022-03-04T17:48:57Z) - Robust resource-efficient quantum variational ansatz through
evolutionary algorithm [0.46180371154032895]
Vari quantum algorithms (VQAsational) are promising methods to demonstrate quantum advantage on near-term devices.
We show that a fixed VQA circuit design, such as the widely-used hardware efficient ansatz, is not necessarily robust against imperfections.
We propose a genome-length-adjustable evolutionary algorithm to design a robust VQA circuit that is optimized over variations of both circuit ansatz and gate parameters.
arXiv Detail & Related papers (2022-02-28T12:14:11Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial
Optimization [0.14755786263360526]
We explore which quantum algorithms for optimization might be most practical to try out on a small fault-tolerant quantum computer.
Our results discourage the notion that any quantum optimization realizing only a quadratic speedup will achieve an advantage over classical algorithms.
arXiv Detail & Related papers (2020-07-14T22:54:04Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.