論文の概要: Conceptual Framework and Documentation Standards of Cystoscopic Media
Content for Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2301.05991v2
- Date: Wed, 18 Jan 2023 09:00:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-19 12:12:01.718141
- Title: Conceptual Framework and Documentation Standards of Cystoscopic Media
Content for Artificial Intelligence
- Title(参考訳): 人工知能のためのシストスコピックメディアコンテンツの概念的枠組みと文書化標準
- Authors: Okyaz Eminaga, Timothy Jiyong Lee, Jessie Ge, Eugene Shkolyar, Mark
Laurie, Jin Long, Lukas Graham Hockman, Joseph C. Liao
- Abstract要約: 概念的枠組みは、シストスコープを標準化された方法で文書化するように設計された。
品質管理と根本原因分析のためのスイスチーズモデルが提案された。
このフレームワークは、FAIRの原則に従ってうまく実装されました。
- 参考スコア(独自算出の注目度): 0.586336038845426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: The clinical documentation of cystoscopy includes visual and
textual materials. However, the secondary use of visual cystoscopic data for
educational and research purposes remains limited due to inefficient data
management in routine clinical practice. Methods: A conceptual framework was
designed to document cystoscopy in a standardized manner with three major
sections: data management, annotation management, and utilization management. A
Swiss-cheese model was proposed for quality control and root cause analyses. We
defined the infrastructure required to implement the framework with respect to
FAIR (findable, accessible, interoperable, re-usable) principles. We applied
two scenarios exemplifying data sharing for research and educational projects
to ensure the compliance with FAIR principles. Results: The framework was
successfully implemented while following FAIR principles. The cystoscopy atlas
produced from the framework could be presented in an educational web portal; a
total of 68 full-length qualitative videos and corresponding annotation data
were sharable for artificial intelligence projects covering frame
classification and segmentation problems at case, lesion and frame levels.
Conclusion: Our study shows that the proposed framework facilitates the storage
of the visual documentation in a standardized manner and enables FAIR data for
education and artificial intelligence research.
- Abstract(参考訳): 背景: 嚢胞内視鏡の臨床資料は、視覚的およびテキスト的材料を含む。
しかし, 定期診療における非効率なデータ管理のため, 教育・研究目的の視覚シストスコープデータの二次的使用は限定的である。
方法: データ管理,アノテーション管理,利用管理という3つの主要なセクションを標準化した方法で嚢胞内視鏡を文書化する,概念的なフレームワークが設計された。
品質管理と根本原因分析のためのスイスチーズモデルが提案された。
FAIR(findable, accessable, interoperable, re-useable)の原則に関して、フレームワークを実装するために必要なインフラストラクチャを定義しました。
FAIR原則の遵守を保証するために、研究プロジェクトと教育プロジェクトのためのデータ共有を実証する2つのシナリオを適用した。
結果: このフレームワークはFAIR原則に従ってうまく実装されました。
このフレームワークから生成された嚢胞内視鏡アトラスを教育用webポータルに提示し,68本の全長質的ビデオとそれに対応する注釈データを,ケース,病変,フレームレベルでの分類問題や分節問題をカバーする人工知能プロジェクトに適用した。
結論:本研究は,視覚文書を標準化した形で保存し,FAIRデータを教育・人工知能研究に活用するための枠組みを提案する。
関連論文リスト
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - AutoMIR: Effective Zero-Shot Medical Information Retrieval without Relevance Labels [19.90354530235266]
本稿では,自己学習仮説文書埋め込み (SL-HyDE) という新しい手法を導入し,この問題に対処する。
SL-HyDEは、与えられたクエリに基づいて仮説文書を生成するために、大きな言語モデル(LLM)をジェネレータとして利用する。
実世界の医療シナリオを基盤とした総合的な評価フレームワークとして,中国医療情報検索ベンチマーク(CMIRB)を提案する。
論文 参考訳(メタデータ) (2024-10-26T02:53:20Z) - IMITATE: Clinical Prior Guided Hierarchical Vision-Language Pre-training [15.04212780946932]
階層的視覚言語アライメントを用いた医療報告から構造情報を学習するための新しいフレームワークImitateを提案する。
このフレームワークは胸部X線(CXR)画像から多段階の視覚特徴を導出し、これらの特徴を階層的な医療報告に符号化された記述的および決定的テキストと別々に整列する。
論文 参考訳(メタデータ) (2023-10-11T10:12:43Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
この研究は、この領域でツールやリソースを共有する際に直面する困難を浮き彫りにしている。
臨床文献のコーパスを12種類に分類した。
私たちは、ディープラーニングモデルと手動ルールの結果をマージして、ハイブリッドシステムを構築します。
論文 参考訳(メタデータ) (2023-03-23T17:17:46Z) - ICDBigBird: A Contextual Embedding Model for ICD Code Classification [71.58299917476195]
文脈単語埋め込みモデルは、複数のNLPタスクにおいて最先端の結果を得た。
ICDBigBirdは、Graph Convolutional Network(GCN)を統合するBigBirdベースのモデルである。
ICD分類作業におけるBigBirdモデルの有効性を実世界の臨床データセットで実証した。
論文 参考訳(メタデータ) (2022-04-21T20:59:56Z) - Best Practices and Scoring System on Reviewing A.I. based Medical
Imaging Papers: Part 1 Classification [0.9428556282541211]
SIIMの機械学習教育サブミッションは、これらの研究をレビューするためのガイドラインを確立するための知識ギャップと深刻な必要性を特定している。
このシリーズの最初のエントリは、画像分類のタスクに焦点を当てている。
このシリーズの目的は、A.I.をベースとした医療画像のレビュープロセスを改善するためのリソースを提供することである。
論文 参考訳(メタデータ) (2022-02-03T21:46:59Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
コンテキスト談話ベクトル(英: Contextual Discourse Vectors、CDV)は、長文からの効率的な回答検索のための分散文書表現である。
本モデルでは,階層型LSTMレイヤとマルチタスクトレーニングを併用したデュアルエンコーダアーキテクチャを用いて,臨床エンティティの位置と文書の談話に沿った側面をエンコードする。
我々の一般化モデルは、医療パスランキングにおいて、最先端のベースラインを著しく上回っていることを示す。
論文 参考訳(メタデータ) (2020-02-03T15:47:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。