論文の概要: Scattering-induced entropy boost for highly-compressed optical sensing and encryption
- arxiv url: http://arxiv.org/abs/2301.06084v2
- Date: Fri, 6 Sep 2024 09:22:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 21:18:57.332849
- Title: Scattering-induced entropy boost for highly-compressed optical sensing and encryption
- Title(参考訳): 高圧縮光センシング・暗号化のための散乱誘起エントロピーアップ
- Authors: Xinrui Zhan, Xuyang Chang, Daoyu Li, Rong Yan, Yinuo Zhang, Liheng Bian,
- Abstract要約: 画像センシングは、大きな視野と高解像度を持つ高品質のマシンビジョンシステムに依存していることが多い。
資源効率の高い画像分類のための新しい画像フリーセンシングフレームワークを提案する。
提案手法は, MNISTデータセットの分類において, サンプリングレートが1%, 5%で95%以上精度が得られた。
- 参考スコア(独自算出の注目度): 7.502671257653539
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image sensing often relies on a high-quality machine vision system with a large field of view and high resolution. It requires fine imaging optics, has high computational costs, and requires a large communication bandwidth between image sensors and computing units. In this paper, we propose a novel image-free sensing framework for resource-efficient image classification, where the required number of measurements can be reduced by up to two orders of magnitude. In the proposed framework for single-pixel detection, the optical field for a target is first scattered by an optical diffuser and then two-dimensionally modulated by a spatial light modulator. The optical diffuser simultaneously serves as a compressor and an encryptor for the target information, effectively narrowing the field of view and improving the system's security. The one-dimensional sequence of intensity values, which is measured with time-varying patterns on the spatial light modulator, is then used to extract semantic information based on end-to-end deep learning. The proposed sensing framework is shown to obtain over a 95\% accuracy at sampling rates of 1% and 5% for classification on the MNIST dataset and the recognition of Chinese license plates, respectively, and the framework is up to 24% more efficient than the approach without an optical diffuser. The proposed framework represents a significant breakthrough in high-throughput machine intelligence for scene analysis with low bandwidth, low costs, and strong encryption.
- Abstract(参考訳): 画像センシングは、大きな視野と高解像度を持つ高品質のマシンビジョンシステムに依存していることが多い。
微細な撮像光学を必要とし、計算コストが高く、画像センサとコンピュータユニット間の通信帯域幅が大きい。
本稿では,資源効率の高い画像分類のための新しい画像自由センシングフレームワークを提案する。
単画素検出のためのフレームワークでは、対象の光学場をまず光学ディフューザで散乱させ、次いで空間光変調器で2次元変調する。
光ディフューザは、同時に、対象情報のための圧縮機と暗号化機として機能し、視野を効果的に狭め、システムのセキュリティを向上させる。
次に、空間光変調器の時間変化パターンを用いて測定された1次元の強度値列を用いて、エンドツーエンドの深層学習に基づいて意味情報を抽出する。
提案したセンシングフレームワークは, MNISTデータセットの分類と中国のライセンスプレートの認識において, サンプリングレートが1%, 5%で95%以上精度が得られ, 光拡散器を使わずに, 最大で24%の効率が得られた。
提案フレームワークは,低帯域幅,低コスト,強力な暗号化を備えたシーン解析のための高スループットマシンインテリジェンスにおいて,重要なブレークスとなる。
関連論文リスト
- Spatial-frequency Dual-Domain Feature Fusion Network for Low-Light Remote Sensing Image Enhancement [49.15531684596958]
低照度リモートセンシング画像強調のためのDFFN(Dual-Domain Feature Fusion Network)を提案する。
第1フェーズは振幅情報を学習して画像輝度を復元し、第2フェーズは位相情報を学習して詳細を洗練させる。
我々は、現在の暗光リモートセンシング画像強調におけるデータセットの欠如に対応するために、2つの暗光リモートセンシングデータセットを構築した。
論文 参考訳(メタデータ) (2024-04-26T13:21:31Z) - Multi-Modal Neural Radiance Field for Monocular Dense SLAM with a
Light-Weight ToF Sensor [58.305341034419136]
単眼カメラと軽量ToFセンサを備えた初の高密度SLAMシステムを提案する。
本稿では,RGBカメラと軽量ToFセンサの両方の信号のレンダリングをサポートするマルチモーダル暗黙のシーン表現を提案する。
実験により,本システムは軽量なToFセンサの信号をうまく利用し,競合的な結果が得られることが示された。
論文 参考訳(メタデータ) (2023-08-28T07:56:13Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
低照度環境は通常、情報の少ない大規模な暗黒地帯に繋がる。
本稿では,ガンマ補正の有効性を深層ネットワークのモデリング能力と統合することを提案する。
指数関数演算は高い計算複雑性をもたらすので、Taylor Series を用いてガンマ補正を近似することを提案する。
論文 参考訳(メタデータ) (2023-08-16T08:46:51Z) - Learning Kernel-Modulated Neural Representation for Efficient Light
Field Compression [41.24757573290883]
光場圧縮タスクのためのコンパクトニューラルネットワーク表現を設計する。
トレーニング中に学んだシーン記述情報を格納する記述カーネル(ディスクリプタ)と、クエリされた視点から異なるSAIのレンダリングを制御する変調カーネル(モジュレータ)の2種類で構成されている。
論文 参考訳(メタデータ) (2023-07-12T12:58:03Z) - Time-lapse image classification using a diffractive neural network [0.0]
回折ネットワークを用いたタイムラプス画像分類方式を初めて示す。
CIFAR-10データセットからの物体の光学的分類におけるブラインドテスト精度は62.03%である。
これは、これまで1つの回折ネットワークを用いて達成された最も高い推測精度を構成する。
論文 参考訳(メタデータ) (2022-08-23T08:16:30Z) - All-optical image classification through unknown random diffusers using
a single-pixel diffractive network [13.7472825798265]
ランダムで未知の散乱媒体の背後にある物体の分類は、計算画像とマシンビジョンフィールドの難しいタスクをセットする。
近年の深層学習に基づくアプローチは、画像センサによって収集されたディフューザ歪みパターンを用いた物体の分類を実証した。
本稿では,1画素で検出されたブロードバンド照明を用いて未知の物体をランダムな位相拡散器で直接分類する全光学プロセッサを提案する。
論文 参考訳(メタデータ) (2022-08-08T08:26:08Z) - A photosensor employing data-driven binning for ultrafast image
recognition [0.0]
ピクセルビンニング(Pixel binning)は、光学画像の取得と分光において広く用いられる技術である。
ここでは、センサー要素の大部分を1つのスーパーピクセルに組み合わせることで、バイナリの概念を限界まで押し上げる。
与えられたパターン認識タスクに対しては、機械学習アルゴリズムを用いてトレーニングデータから最適な形状を決定する。
論文 参考訳(メタデータ) (2021-11-20T15:38:39Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
光リモートセンシング画像(RSI)のためのSODは、光学RSIから視覚的に特徴的な物体や領域を探索・抽出することを目的としている。
光学RSIにおけるSODに並列なマルチスケールアテンションを持つリレーショナル推論ネットワークを提案する。
提案するRRNetは,既存の最先端SODコンペティタよりも質的,定量的に優れている。
論文 参考訳(メタデータ) (2021-10-27T07:18:32Z) - Light Lies: Optical Adversarial Attack [24.831391763610046]
本稿では, 画像センサに到達した光界情報を物理的に変化させて, 分類モデルが誤分類を生じさせる光学対向攻撃を提案する。
シミュレーションと実際のハードウェア光システムの両方に基づく実験を行い,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2021-06-18T04:20:49Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
そこで本研究では,収差画像とpsfマップを入力とし,レンズ固有深層プリエントを組み込んだ潜在高品質版を生成する,psf対応プラグイン・アンド・プレイ深層ネットワークを提案する。
具体的には、多彩なレンズの集合からベースモデルを事前訓練し、パラメータを迅速に精製して特定のレンズに適応させる。
論文 参考訳(メタデータ) (2021-04-07T12:00:38Z) - Correlation Plenoptic Imaging between Arbitrary Planes [52.77024349608834]
提案プロトコルは,処理後の集中面の変更を可能にし,画像解像度と被写界深度を前例のない組み合わせで実現可能であることを示す。
その結果、カオス光に基づく相関レンズ画像装置のコンパクト化や、絡み合った光子照明に基づく高SNRレンズ画像装置の開発への道が開かれた。
論文 参考訳(メタデータ) (2020-07-23T14:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。