Surgical Aggregation: Federated Class-Heterogeneous Learning
- URL: http://arxiv.org/abs/2301.06683v5
- Date: Fri, 5 Jan 2024 17:18:56 GMT
- Title: Surgical Aggregation: Federated Class-Heterogeneous Learning
- Authors: Pranav Kulkarni, Adway Kanhere, Paul H. Yi, Vishwa S. Parekh
- Abstract summary: We propose surgical aggregation, a federated learning framework for aggregating knowledge from class-heterogeneous datasets.
We evaluate our method using simulated and real-world class-heterogeneous datasets across both independent and identically distributed (iid) and non-iid settings.
- Score: 4.468858802955592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The release of numerous chest x-ray datasets has spearheaded the development
of deep learning models with expert-level performance. However, they have
limited interoperability due to class-heterogeneity -- a result of inconsistent
labeling schemes and partial annotations. Therefore, it is challenging to
leverage these datasets in aggregate to train models with a complete
representation of abnormalities that may occur within the thorax. In this work,
we propose surgical aggregation, a federated learning framework for aggregating
knowledge from class-heterogeneous datasets and learn a model that can
simultaneously predict the presence of all disease labels present across the
datasets. We evaluate our method using simulated and real-world
class-heterogeneous datasets across both independent and identically
distributed (iid) and non-iid settings. Our results show that surgical
aggregation outperforms current methods, has better generalizability, and is a
crucial first step towards tackling class-heterogeneity in federated learning
to facilitate the development of clinically-useful models using previously
non-interoperable chest x-ray datasets.
Related papers
- UNICORN: A Deep Learning Model for Integrating Multi-Stain Data in Histopathology [2.9389205138207277]
UNICORN is a multi-modal transformer capable of processing multi-stain histopathology for atherosclerosis severity class prediction.
The architecture comprises a two-stage, end-to-end trainable model with specialized modules utilizing transformer self-attention blocks.
UNICORN achieved a classification accuracy of 0.67, outperforming other state-of-the-art models.
arXiv Detail & Related papers (2024-09-26T12:13:52Z) - Artificial Data Point Generation in Clustered Latent Space for Small
Medical Datasets [4.542616945567623]
This paper introduces a novel method, Artificial Data Point Generation in Clustered Latent Space (AGCL)
AGCL is designed to enhance classification performance on small medical datasets through synthetic data generation.
It was applied to Parkinson's disease screening, utilizing facial expression data.
arXiv Detail & Related papers (2024-09-26T09:51:08Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
This paper presents the Hybrid Early-fusion Attention Learning Network (HEALNet), a flexible multimodal fusion architecture.
We conduct multimodal survival analysis on Whole Slide Images and Multi-omic data on four cancer datasets from The Cancer Genome Atlas (TCGA)
HEALNet achieves state-of-the-art performance compared to other end-to-end trained fusion models.
arXiv Detail & Related papers (2023-11-15T17:06:26Z) - Unlearning Spurious Correlations in Chest X-ray Classification [4.039245878626345]
We train a deep learning model using a Covid-19 chest X-ray dataset.
We show how this dataset can lead to spurious correlations due to unintended confounding regions.
XBL is a deep learning approach that goes beyond interpretability by utilizing model explanations to interactively unlearn spurious correlations.
arXiv Detail & Related papers (2023-08-02T12:59:10Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z) - Siloed Federated Learning for Multi-Centric Histopathology Datasets [0.17842332554022694]
This paper proposes a novel federated learning approach for deep learning architectures in the medical domain.
Local-statistic batch normalization (BN) layers are introduced, resulting in collaboratively-trained, yet center-specific models.
We benchmark the proposed method on the classification of tumorous histopathology image patches extracted from the Camelyon16 and Camelyon17 datasets.
arXiv Detail & Related papers (2020-08-17T15:49:30Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
We develop a deep learning approach for clustering time-series data, where each cluster comprises patients who share similar future outcomes of interest.
Experiments on two real-world datasets show that our model achieves superior clustering performance over state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-06-15T20:48:43Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.