Artificial Data Point Generation in Clustered Latent Space for Small
Medical Datasets
- URL: http://arxiv.org/abs/2409.17685v1
- Date: Thu, 26 Sep 2024 09:51:08 GMT
- Title: Artificial Data Point Generation in Clustered Latent Space for Small
Medical Datasets
- Authors: Yasaman Haghbin, Hadi Moradi, Reshad Hosseini
- Abstract summary: This paper introduces a novel method, Artificial Data Point Generation in Clustered Latent Space (AGCL)
AGCL is designed to enhance classification performance on small medical datasets through synthetic data generation.
It was applied to Parkinson's disease screening, utilizing facial expression data.
- Score: 4.542616945567623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the growing trends in machine learning is the use of data generation
techniques, since the performance of machine learning models is dependent on
the quantity of the training dataset. However, in many medical applications,
collecting large datasets is challenging due to resource constraints, which
leads to overfitting and poor generalization. This paper introduces a novel
method, Artificial Data Point Generation in Clustered Latent Space (AGCL),
designed to enhance classification performance on small medical datasets
through synthetic data generation. The AGCL framework involves feature
extraction, K-means clustering, cluster evaluation based on a class separation
metric, and the generation of synthetic data points from clusters with distinct
class representations. This method was applied to Parkinson's disease
screening, utilizing facial expression data, and evaluated across multiple
machine learning classifiers. Experimental results demonstrate that AGCL
significantly improves classification accuracy compared to baseline, GN and
kNNMTD. AGCL achieved the highest overall test accuracy of 83.33% and
cross-validation accuracy of 90.90% in majority voting over different emotions,
confirming its effectiveness in augmenting small datasets.
Related papers
- VICatMix: variational Bayesian clustering and variable selection for discrete biomedical data [0.0]
We present VICatMix, a variational Bayesian finite mixture model designed for the clustering of categorical data.
The proposed model incorporates summarisation and model averaging to mitigate poor local optima in VI, allowing for improved estimation of the true number of clusters.
We demonstrate VICatMix's utility in integrative cluster analysis with different omics datasets, enabling the discovery of novel subtypes.
arXiv Detail & Related papers (2024-06-23T21:45:04Z) - An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
Autistic Spectrum Disorder (ASD) is a neurological disease characterized by difficulties with social interaction, communication, and repetitive activities.
This study employs diverse machine learning methods to identify crucial ASD traits, aiming to enhance and automate the diagnostic process.
arXiv Detail & Related papers (2023-09-20T21:23:37Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Machine Learning Based Missing Values Imputation in Categorical Datasets [2.5611256859404983]
This research looked into the use of machine learning algorithms to fill in the gaps in categorical datasets.
The emphasis was on ensemble models constructed using the Error Correction Output Codes framework.
Deep learning for missing data imputation has obstacles despite these encouraging results, including the requirement for large amounts of labeled data.
arXiv Detail & Related papers (2023-06-10T03:29:48Z) - Adversarially-regularized mixed effects deep learning (ARMED) models for
improved interpretability, performance, and generalization on clustered data [0.974672460306765]
Mixed effects models separate cluster-invariant, population-level fixed effects from cluster-specific random effects.
We propose a general-purpose framework for building Adversarially-Regularized Mixed Effects Deep learning (ARMED) models through 3 non-intrusive additions to existing networks.
We apply this framework to dense feedforward neural networks (DFNNs), convolutional neural networks, and autoencoders on 4 applications including simulations, dementia prognosis and diagnosis, and cell microscopy.
arXiv Detail & Related papers (2022-02-23T20:58:22Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
This paper presents CvS, a cost-effective classifier for small datasets that derives the classification labels from predicting the segmentation maps.
We evaluate the effectiveness of our framework on diverse problems showing that CvS is able to achieve much higher classification results compared to previous methods when given only a handful of examples.
arXiv Detail & Related papers (2021-10-29T18:41:15Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z) - Data augmentation using generative networks to identify dementia [20.137419355252362]
We show that generative models can be used as an effective approach for data augmentation.
In this paper, we investigate the application of a similar approach to different types of speech and audio-based features extracted from our automatic dementia detection system.
arXiv Detail & Related papers (2020-04-13T15:05:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.