Improved generalization with deep neural operators for engineering systems: Path towards digital twin
- URL: http://arxiv.org/abs/2301.06701v3
- Date: Mon, 29 Apr 2024 02:33:13 GMT
- Title: Improved generalization with deep neural operators for engineering systems: Path towards digital twin
- Authors: Kazuma Kobayashi, James Daniell, Syed Bahauddin Alam,
- Abstract summary: We evaluate the capabilities of Deep Operator Networks (DeepONets), an ONets implementation using a branch/trunk architecture.
DeepONets can accurately learn the solution operators, achieving prediction accuracy scores above 0.96 for the ODE and diffusion problems.
More importantly, when evaluated on unseen scenarios (zero shot feature), the trained models exhibit excellent generalization ability.
- Score: 0.4551615447454769
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Operator Networks (ONets) represent a novel advancement in machine learning algorithms, offering a robust and generalizable alternative for approximating partial differential equations (PDEs) solutions. Unlike traditional Neural Networks (NN), which directly approximate functions, ONets specialize in approximating mathematical operators, enhancing their efficacy in addressing complex PDEs. In this work, we evaluate the capabilities of Deep Operator Networks (DeepONets), an ONets implementation using a branch/trunk architecture. Three test cases are studied: a system of ODEs, a general diffusion system, and the convection/diffusion Burgers equation. It is demonstrated that DeepONets can accurately learn the solution operators, achieving prediction accuracy scores above 0.96 for the ODE and diffusion problems over the observed domain while achieving zero shot (without retraining) capability. More importantly, when evaluated on unseen scenarios (zero shot feature), the trained models exhibit excellent generalization ability. This underscores ONets vital niche for surrogate modeling and digital twin development across physical systems. While convection-diffusion poses a greater challenge, the results confirm the promise of ONets and motivate further enhancements to the DeepONet algorithm. This work represents an important step towards unlocking the potential of digital twins through robust and generalizable surrogates.
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
We present a principled approach to operator learning that can capture local features under two frameworks.
We prove that we obtain differential operators under an appropriate scaling of the kernel values of CNNs.
To obtain local integral operators, we utilize suitable basis representations for the kernels based on discrete-continuous convolutions.
arXiv Detail & Related papers (2024-02-26T18:59:31Z) - Operator Learning: Algorithms and Analysis [8.305111048568737]
Operator learning refers to the application of ideas from machine learning to approximate operators mapping between Banach spaces of functions.
This review focuses on neural operators, built on the success of deep neural networks in the approximation of functions defined on finite dimensional Euclidean spaces.
arXiv Detail & Related papers (2024-02-24T04:40:27Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Convolutional Neural Operators for robust and accurate learning of PDEs [11.562748612983956]
We present novel adaptations for convolutional neural networks to process functions as inputs and outputs.
The resulting architecture is termed as convolutional neural operators (CNOs)
We prove a universality theorem to show that CNOs can approximate operators arising in PDEs to desired accuracy.
arXiv Detail & Related papers (2023-02-02T15:54:45Z) - Reliable extrapolation of deep neural operators informed by physics or
sparse observations [2.887258133992338]
Deep neural operators can learn nonlinear mappings between infinite-dimensional function spaces via deep neural networks.
DeepONets provide a new simulation paradigm in science and engineering.
We propose five reliable learning methods that guarantee a safe prediction under extrapolation.
arXiv Detail & Related papers (2022-12-13T03:02:46Z) - Enhanced DeepONet for Modeling Partial Differential Operators
Considering Multiple Input Functions [5.819397109258169]
A deep network operator (DeepONet) was proposed to model the general non-linear continuous operators for partial differential equations (PDE)
Existing DeepONet can only accept one input function, which limits its application.
We propose new Enhanced DeepONet or EDeepONet high-level neural network structure, in which two input functions are represented by two branch sub-networks.
Our numerical results on modeling two partial differential equation examples shows that the proposed enhanced DeepONet is about 7X-17X or about one order of magnitude more accurate than the fully connected neural network.
arXiv Detail & Related papers (2022-02-17T23:58:23Z) - Multigoal-oriented dual-weighted-residual error estimation using deep
neural networks [0.0]
Deep learning is considered as a powerful tool with high flexibility to approximate functions.
Our approach is based on a posteriori error estimation in which the adjoint problem is solved for the error localization.
An efficient and easy to implement algorithm is developed to obtain a posteriori error estimate for multiple goal functionals.
arXiv Detail & Related papers (2021-12-21T16:59:44Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.