論文の概要: Attention and Pooling based Sigmoid Colon Segmentation in 3D CT images
- arxiv url: http://arxiv.org/abs/2309.13872v1
- Date: Mon, 25 Sep 2023 04:52:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 17:03:08.251950
- Title: Attention and Pooling based Sigmoid Colon Segmentation in 3D CT images
- Title(参考訳): 3次元ct画像におけるs状結腸分割の注意とプール化
- Authors: Md Akizur Rahman, Sonit Singh, Kuruparan Shanmugalingam, Sankaran
Iyer, Alan Blair, Praveen Ravindran, Arcot Sowmya
- Abstract要約: シグモイド結腸は憩室炎を治療するための重要な側面である。
本研究はCT画像からシグモイド結腸を抽出するための新しいディープラーニングアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 11.861208424384046
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Segmentation of the sigmoid colon is a crucial aspect of treating
diverticulitis. It enables accurate identification and localisation of
inflammation, which in turn helps healthcare professionals make informed
decisions about the most appropriate treatment options. This research presents
a novel deep learning architecture for segmenting the sigmoid colon from
Computed Tomography (CT) images using a modified 3D U-Net architecture. Several
variations of the 3D U-Net model with modified hyper-parameters were examined
in this study. Pyramid pooling (PyP) and channel-spatial Squeeze and Excitation
(csSE) were also used to improve the model performance. The networks were
trained using manually annotated sigmoid colon. A five-fold cross-validation
procedure was used on a test dataset to evaluate the network's performance. As
indicated by the maximum Dice similarity coefficient (DSC) of 56.92+/-1.42%,
the application of PyP and csSE techniques improves segmentation precision. We
explored ensemble methods including averaging, weighted averaging, majority
voting, and max ensemble. The results show that average and majority voting
approaches with a threshold value of 0.5 and consistent weight distribution
among the top three models produced comparable and optimal results with DSC of
88.11+/-3.52%. The results indicate that the application of a modified 3D U-Net
architecture is effective for segmenting the sigmoid colon in Computed
Tomography (CT) images. In addition, the study highlights the potential
benefits of integrating ensemble methods to improve segmentation precision.
- Abstract(参考訳): s状結腸の分節は憩室炎治療の重要な要素である。
炎症の正確な同定と局所化を可能にし、医療専門家が最も適切な治療方法に関するインフォームドな判断を行うのに役立つ。
本研究は,CT画像からSigmoid colonを抽出する深層学習アーキテクチャを改良した3次元U-Netアーキテクチャを用いて提案する。
本研究では, 改良型ハイパーパラメータを用いた3次元U-Netモデルの様々なバリエーションについて検討した。
ピラミドプーリング(PyP)とチャネル空間スキューズと励磁(csSE)もモデル性能を向上させるために用いられた。
ネットワークは手動のシグモイド結腸を用いて訓練された。
ネットワークの性能を評価するために、テストデータセットに5倍のクロスバリデーション手順が使用された。
56.92+/-1.42%の最大Dice類似係数(DSC)で示されるように、PyPおよびcsSE技術の適用はセグメンテーション精度を向上させる。
平均化,重み付け平均化,多数決,最大アンサンブルを含むアンサンブル法を検討した。
その結果, しきい値0.5と最上位3モデル間の一貫した重量分布を持つ平均的および多数決的アプローチは, DSC 88.11+/-3.52%と同等かつ最適な結果を得た。
その結果,CT画像のシグモイド結腸の分画には3D U-Net アーキテクチャの応用が有効であることが示唆された。
さらに,セグメンテーション精度を向上させるために,アンサンブル手法を統合することの潜在的メリットを強調する。
関連論文リスト
- Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
非コントラストCT脳画像における急性虚血性脳梗塞の容積分画を目的とした自動アルゴリズムを提案する。
我々のディープラーニングアプローチは、人気のある3D U-Net畳み込みニューラルネットワークアーキテクチャに基づいている。
論文 参考訳(メタデータ) (2023-01-17T10:39:39Z) - Mediastinal Lymph Node Detection and Segmentation Using Deep Learning [1.7188280334580195]
臨床ではCT(Computed tomography)とPET(positron emission tomography)が異常リンパ節(LN)を検出する
深層畳み込みニューラルネットワークは、しばしば医療写真にアイテムを分割する。
良質な深層学習手法であるUNetは、縦隔リンパ節の分節と検出のための戦略に基づいて、双線形および全一般化変異(TGV)を用いて修正された。
修正されたUNetはテクスチャの不連続を維持し、ノイズの多い領域を選択し、バックプロパゲーションを通じて適切なバランスポイントを検索し、画像の解像度を再現する。
論文 参考訳(メタデータ) (2022-11-24T02:55:20Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
追加の注意層を持つU-net畳み込みニューラルネットワークは、最高の手首軟骨分割性能を提供する。
非MRI法を用いて軟骨体積測定の誤差を独立に評価すべきである。
論文 参考訳(メタデータ) (2022-06-22T14:19:06Z) - Med-DANet: Dynamic Architecture Network for Efficient Medical Volumetric
Segmentation [13.158995287578316]
我々は,Med-DANetという動的アーキテクチャネットワークを提案し,効率的な精度と効率のトレードオフを実現する。
入力された3次元MRIボリュームのスライス毎に,提案手法は決定ネットワークによってスライス固有の決定を学習する。
提案手法は, 従来の3次元MRI脳腫瘍セグメント化法と比較して, 同等あるいは良好な結果が得られる。
論文 参考訳(メタデータ) (2022-06-14T03:25:58Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
本稿では,2次元から3次元のセグメンテーションフレームワークに対向的な性能検証ネットワークを導入する。
提案したネットワークは, 2次元粗い結果から3次元高品質なセグメンテーションマスクへの変換を行い, 共同最適化によりセグメンテーション精度が向上する。
NIH膵分節データセットの実験では、提案したネットワークが小臓器分節の最先端の精度を達成し、過去の最高性能を上回った。
論文 参考訳(メタデータ) (2022-04-16T18:00:29Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - Automatic CT Segmentation from Bounding Box Annotations using
Convolutional Neural Networks [2.554905387213585]
提案手法は,1)k平均クラスタリングによる境界ボックスアノテーションを用いた擬似マスクの生成,2)分割モデルとして3次元U-Net畳み込みニューラルネットワークを反復的に訓練する。
肝臓、脾臓、腎臓のセグメンテーションでは、それぞれ95.19%、92.11%、91.45%の精度を達成した。
論文 参考訳(メタデータ) (2021-05-29T14:48:16Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。