論文の概要: From Risk Prediction to Risk Factors Interpretation. Comparison of
Neural Networks and Classical Statistics for Dementia Prediction
- arxiv url: http://arxiv.org/abs/2301.06995v1
- Date: Tue, 17 Jan 2023 16:26:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 13:32:51.550207
- Title: From Risk Prediction to Risk Factors Interpretation. Comparison of
Neural Networks and Classical Statistics for Dementia Prediction
- Title(参考訳): リスク予測からリスク要因の解釈までです
認知症予測のためのニューラルネットワークと古典統計の比較
- Authors: C. Huber
- Abstract要約: いくつかのリスクファクターに基づいて、D病の発症を調査することを提案する。
古典統計学と人工知能の2つのクラスが利用可能である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is proposed to investigate the onset of a disease D, based on several risk
factors., with a specific interest in Alzheimer occurrence. For that purpose,
two classes of techniques are available, whose properties are quite different
in terms of interpretation, which is the focus of this paper: classical
statistics based on probabilistic models and artificial intelligence (mainly
neural networks) based on optimization algorithms. Both methods are good at
prediction, with a preference for neural networks when the dimension of the
potential predictors is high. But the advantage of the classical statistics is
cognitive : the role of each factor is generally summarized in the value of a
coefficient which is highly positive for a harmful factor, close to 0 for an
irrelevant one, and highly negative for a beneficial one.
- Abstract(参考訳): いくつかの危険因子に基づくD病発症の解明が提案されている。
アルツハイマー病の発生に特に興味を持つ。
その目的のために、2種類の技術が利用可能であり、その特性は解釈の点でかなり異なる。これはこの論文の焦点であり、確率モデルに基づく古典統計と最適化アルゴリズムに基づく人工知能(主にニューラルネットワーク)である。
どちらの手法も予測が得意で、潜在的な予測器の次元が高い場合にはニューラルネットワークを優先する。
しかし、古典的な統計学の利点は認知である:各因子の役割は一般に有害な要因に対して高い正の係数の値、無関係な要因に対しては0に近く、有益な要因に対しては非常に負の値で要約される。
関連論文リスト
- Neural Fine-Gray: Monotonic neural networks for competing risks [0.0]
生存分析として知られる時間対イベントモデリングは、関心のある出来事を経験していない患者の検閲に対処するため、標準回帰とは異なる。
本稿では、制約付きモノトニックニューラルネットワークを用いて、各サバイバル分布をモデル化する。
このソリューションの有効性は、1つの合成データセットと3つの医療データセットで示される。
論文 参考訳(メタデータ) (2023-05-11T10:27:59Z) - Disentangling the Link Between Image Statistics and Human Perception [47.912998421927085]
1950年代、BarlowとAttneaveは生物学的ビジョンと情報の最大化の関係を仮説づけた。
現状の主観的画像品質指標の感度を利用して, 確率関連因子を組み合わせ, 人間の知覚を予測する方法を示す。
論文 参考訳(メタデータ) (2023-03-17T10:38:27Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
特徴統計を適切に操作することで、ディープラーニングモデルの一般化能力を向上させることができると論じる。
一般的な手法では、特徴統計を学習した特徴から測定された決定論的値とみなすことが多い。
我々は、学習中に合成された特徴統計を用いて、領域シフトの不確かさをモデル化することにより、ネットワークの一般化能力を向上させる。
論文 参考訳(メタデータ) (2022-02-08T16:09:12Z) - Improving Prediction of Cognitive Performance using Deep Neural Networks
in Sparse Data [2.867517731896504]
MIDUS(Midlife in the United States)の観察・コホート研究から得られたデータを用いて,エグゼクティブ機能とエピソード記憶測定をモデル化した。
ディープニューラルネットワーク(DNN)モデルは、認知パフォーマンス予測タスクの中で一貫して最高である。
論文 参考訳(メタデータ) (2021-12-28T22:23:08Z) - Two steps to risk sensitivity [4.974890682815778]
条件付きバリュー・アット・リスク(CVaR)は、人間と動物の計画のモデル化のためのリスク尺度である。
CVaRに対する従来の分布的アプローチを逐次的に導入し、人間の意思決定者の選択を再分析する。
次に,リスク感度,すなわち時間的整合性,さらに重要な特性について考察し,CVaRの代替案を示す。
論文 参考訳(メタデータ) (2021-11-12T16:27:47Z) - A New Approach for Interpretability and Reliability in Clinical Risk
Prediction: Acute Coronary Syndrome Scenario [0.33927193323747895]
我々は、リスクスコアと機械学習モデルの両方の最高の特徴を組み合わせた、新たなリスクアセスメント方法論を作成するつもりです。
提案手法は、標準LRと同一の試験結果を得たが、より優れた解釈性とパーソナライゼーションを提供する。
個人予測の信頼性推定は誤分類率と大きな相関を示した。
論文 参考訳(メタデータ) (2021-10-15T19:33:46Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Variational Bayes Neural Network: Posterior Consistency, Classification
Accuracy and Computational Challenges [0.3867363075280544]
本稿では,変分ベイズニューラルネットワーク推定手法と関連する統計理論について述べる。
この開発は、軽度の認知障害からアルツハイマー病へ移行するための予測ツールを構築する、重要なバイオメディカルエンジニアリングアプリケーションによって動機付けられている。
論文 参考訳(メタデータ) (2020-11-19T00:11:27Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
本研究では,機械学習が訓練された深層ニューラルネットワークのバイアスと分散に与える影響について検討する。
我々の分析は、ディープニューラルネットワークが対向的摂動下で性能が劣っている理由に光を当てている。
本稿では,計算処理の複雑さをよく知られた機械学習手法よりも低く抑えた,新しい逆機械学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-01T00:58:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。