Towards Quantum Telescopes: Demonstration of a Two-Photon Interferometer
for Quantum-Assisted Astronomy
- URL: http://arxiv.org/abs/2301.07042v1
- Date: Tue, 17 Jan 2023 17:53:54 GMT
- Title: Towards Quantum Telescopes: Demonstration of a Two-Photon Interferometer
for Quantum-Assisted Astronomy
- Authors: Jesse Crawford, Denis Dolzhenko, Michael Keach, Aaron Mueninghoff,
Raphael A. Abrahao, Julian Martinez-Rincon, Paul Stankus, Stephen
Vintskevich, Andrei Nomerotski
- Abstract summary: We describe a novel type of two-photon quantum-assisted interferometer, which may allow improvements in precision by orders of magnitude.
This work opens new possibilities in astronomical measurements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optical Very-Long-Baseline Interferometers (VLBI), widely used in astronomy,
require phase-stable optical links across stations, which impose a limit on
baseline distances, and, in turn, limits measurement precision. Here we
describe a novel type of two-photon quantum-assisted interferometer, which may
allow improvements in precision by orders of magnitude benefiting numerous
fields in cosmology and astrophysics. We tested a tabletop version of the
interferometer and unambiguously observe correlated behavior in detections of
photon pairs from two thermal light sources, in agreement with theoretical
predictions. This work opens new possibilities in astronomical measurements.
Related papers
- Experimental Observation of Earth's Rotation with Quantum Entanglement [0.0]
We present a table-top experiment using maximally path-entangled quantum states of light in an interferometer with an area of 715 m$2$.
The achieved sensitivity of 5 $mu$rad/s constitutes the highest rotation resolution ever achieved with optical quantum interferometers.
arXiv Detail & Related papers (2023-10-25T18:01:23Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Single-Photon Signal Sideband Detection for High-Power Michelson
Interferometers [0.0]
The Michelson interferometer is a cornerstone of experimental physics.
Interferometer precision provides a unique view of the fundamental medium of matter and energy.
arXiv Detail & Related papers (2022-11-08T05:27:15Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Two-colour spectrally multimode integrated SU(1,1) interferometer [77.34726150561087]
We develop and investigate an integrated multimode two-colour SU (1,1) interferometer that operates in a supersensitive mode.
By ensuring a proper design of the integrated platform, we suppress dispersion and thereby significantly increase the visibility of the interference pattern.
We demonstrate that such an interferometer overcomes the classical phase sensitivity limit for wide parametric gain ranges, when up to $3*104$ photons are generated.
arXiv Detail & Related papers (2022-02-10T13:30:42Z) - Quantum-Assisted Optical Interferometers: Instrument Requirements [37.89976990030855]
We propose that photons from two different sources could be interfered at two decoupled stations, requiring only a slow classical connection between them.
We show that this approach could allow high-precision measurements of the relative astrometry of the two sources, with a simple estimate giving angular resolution of $10 mu$as in a few hours' observation of two bright stars.
arXiv Detail & Related papers (2020-12-04T19:25:02Z) - Two-photon amplitude interferometry for precision astrometry [0.0]
Two photons from different sources are interfered at two separate and decoupled stations.
angular precision on the order of $10$microarcsecond could be achieved in a single night's observation of two bright stars.
arXiv Detail & Related papers (2020-10-18T20:45:58Z) - Quantum-enhanced interferometry with large heralded photon-number states [0.6533991589591085]
In optical interferometry, a probe consisting of $N$ entangled photons provides up to a $sqrtN$ enhancement in phase sensitivity.
Our work paves the way towards quantum-enhanced interferometry using large entangled photonic states.
arXiv Detail & Related papers (2020-06-15T14:53:31Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.