Single-Photon Signal Sideband Detection for High-Power Michelson
Interferometers
- URL: http://arxiv.org/abs/2211.04016v1
- Date: Tue, 8 Nov 2022 05:27:15 GMT
- Title: Single-Photon Signal Sideband Detection for High-Power Michelson
Interferometers
- Authors: Lee McCuller
- Abstract summary: The Michelson interferometer is a cornerstone of experimental physics.
Interferometer precision provides a unique view of the fundamental medium of matter and energy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The Michelson interferometer is a cornerstone of experimental physics. Its
applications range from providing first impressions of wave interference in
educational settings to probing spacetime at minuscule precision scales.
Interferometer precision provides a unique view of the fundamental medium of
matter and energy, enabling tests for new physics as well as searches for the
gravitational wave signatures of distant astrophysical events. Optical
interferometers are typically operated by continuously measuring the power at
their output port. Signal perturbations then create sideband fields, forming a
beat-note with the fringe light that modulates that power. When operated at a
nearly-dark destructive interference fringe, this readout is a form of homodyne
detection, with an imprecision set by a ``standard quantum limit'' attributed
to shot noise from quantum vacuum fluctuations. The sideband signal fields
carry energy which can, alternatively, be directly observed as photons distinct
from the source laser. Without signal energy, vacuum does not form sidebands
and cannot spuriously create photon counts or shot noise. Thus, counting can
offer improved statistics when searching for weak signals when classical
backgrounds are below the standard quantum limit. Here, photon counting
statistics are described for optical interferometry, relating the two forms of
measurement and showing cases where counting greatly outperforms homodyne
readout, even with squeezed state quantum enhancement. The most immediate
application for photon counting is improving searches of stochastic signals,
such as from quantum gravity or from new particle fields. The advantages of
counting may extend to wider applications, such as gravitational wave
detectors, and the concept of Fisher-information representative spectral
density is introduced to motivate further study.
Related papers
- Feynman Diagrams for Matter Wave Interferometry [0.0]
We introduce a new theoretical framework based on Feynman diagrams to compute phase shifts in matter wave interferometry.
We apply the method to compute the response of matter wave interferometers to power law potentials and potentials with an arbitrary spatial dependence.
arXiv Detail & Related papers (2024-07-16T07:26:19Z) - Characterizing Biphoton Spatial Wave Function Dynamics with Quantum Wavefront Sensing [9.095723333008811]
We introduce quantum Shack-Hartmann wavefront sensing to perform efficient and reference-free measurement of the biphoton spatial wave function.
Our work is a crucial step in quantum physical and adaptive optics and paves the way for characterizing quantum optical fields with high-order correlations or topological patterns.
arXiv Detail & Related papers (2024-06-07T14:37:45Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Experimental Observation of Earth's Rotation with Quantum Entanglement [0.0]
We present a table-top experiment using maximally path-entangled quantum states of light in an interferometer with an area of 715 m$2$.
The achieved sensitivity of 5 $mu$rad/s constitutes the highest rotation resolution ever achieved with optical quantum interferometers.
arXiv Detail & Related papers (2023-10-25T18:01:23Z) - Engineering the impact of phonon dephasing on the coherence of a WSe$_{2}$ single-photon source via cavity quantum electrodynamics [36.88715167286119]
Emitter dephasing is one of the key issues in the performance of solid-state single photon sources.
We show that it is possible to tune and engineer the coherence of photons emitted from a single WSe$$ monolayer dot via selectively coupling it to a spectral cavity resonance.
arXiv Detail & Related papers (2023-07-13T16:41:06Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Quantum optomechanical system in a Mach-Zehnder interferometer [0.0]
We show that squeezed light can be generated by pure scattering on a quantum system, without involving a cavity.
The squeezing can be detected at the output ports of the interferometer either by direct detection or by measuring the spectrum of the difference current.
arXiv Detail & Related papers (2021-01-22T09:17:34Z) - A room temperature optomechanical squeezer [0.0]
One of the noise sources that currently limits gravitational wave (GW) detectors comes from the quantum nature of the light causing uncertain amplitude and phase.
GW detectors plan to use squeezed light injection to lower this quantum noise.
I focus on using radiation-pressure-mediated optomechanical (OM) interaction to generate squeezed light.
arXiv Detail & Related papers (2020-06-25T11:56:34Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.