A Fast Algorithm for Adaptive Private Mean Estimation
- URL: http://arxiv.org/abs/2301.07078v1
- Date: Tue, 17 Jan 2023 18:44:41 GMT
- Title: A Fast Algorithm for Adaptive Private Mean Estimation
- Authors: John Duchi and Saminul Haque and Rohith Kuditipudi
- Abstract summary: We design an $(varepsilon, delta)$-differentially private algorithm that is adaptive to $Sigma$.
The estimator achieves optimal rates of convergence with respect to the induced Mahalanobis norm $||cdot||_Sigma$.
- Score: 5.090363690988394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We design an $(\varepsilon, \delta)$-differentially private algorithm to
estimate the mean of a $d$-variate distribution, with unknown covariance
$\Sigma$, that is adaptive to $\Sigma$. To within polylogarithmic factors, the
estimator achieves optimal rates of convergence with respect to the induced
Mahalanobis norm $||\cdot||_\Sigma$, takes time $\tilde{O}(n d^2)$ to compute,
has near linear sample complexity for sub-Gaussian distributions, allows
$\Sigma$ to be degenerate or low rank, and adaptively extends beyond
sub-Gaussianity. Prior to this work, other methods required exponential
computation time or the superlinear scaling $n = \Omega(d^{3/2})$ to achieve
non-trivial error with respect to the norm $||\cdot||_\Sigma$.
Related papers
- Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
Previous private estimators on distributions over $mathRd suffer from a curse of dimensionality.
We present an algorithm whose sample complexity has improved dependence on dimension.
arXiv Detail & Related papers (2024-11-01T17:59:53Z) - Fast Minimization of Expected Logarithmic Loss via Stochastic Dual
Averaging [8.990961435218544]
We propose a first-order algorithm named $B$-sample dual averaging with the logarithmic barrier.
For the Poisson inverse problem, our algorithm attains an $varepsilon$ solution in $smashtildeO(d3/varepsilon2)$ time.
When computing the maximum-likelihood estimate for quantum state tomography, our algorithm yields an $varepsilon$-optimal solution in $smashtildeO(d3/varepsilon2)$ time.
arXiv Detail & Related papers (2023-11-05T03:33:44Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Stochastic Approximation Approaches to Group Distributionally Robust
Optimization [96.26317627118912]
Group distributionally robust optimization (GDRO)
Online learning techniques to reduce the number of samples required in each round from $m$ to $1$, keeping the same sample.
A novel formulation of weighted GDRO, which allows us to derive distribution-dependent convergence rates.
arXiv Detail & Related papers (2023-02-18T09:24:15Z) - Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance
Estimation for Subgaussian Distributions [8.40077201352607]
We present a fast, differentially private algorithm for high-dimensional covariance-aware mean estimation.
Our algorithm produces $tildemu$ such that $|mu|_Sigma leq alpha$ as long as $n gtrsim tfrac d alpha2 + tfracd sqrtlog 1/deltaalpha varepsilon+fracdlog 1/deltavarepsilon$.
arXiv Detail & Related papers (2023-01-28T16:57:46Z) - Sharper Convergence Guarantees for Asynchronous SGD for Distributed and
Federated Learning [77.22019100456595]
We show a training algorithm for distributed computation workers with varying communication frequency.
In this work, we obtain a tighter convergence rate of $mathcalO!!!(sigma2-2_avg!! .
We also show that the heterogeneity term in rate is affected by the average delay within each worker.
arXiv Detail & Related papers (2022-06-16T17:10:57Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
We study the problem of high-dimensional sparse mean estimation in the presence of an $epsilon$-fraction of adversarial outliers.
Our algorithms follow the Sum-of-Squares based, to algorithms approach.
arXiv Detail & Related papers (2022-06-07T16:49:54Z) - Convergence of Sparse Variational Inference in Gaussian Processes
Regression [29.636483122130027]
We show that a method with an overall computational cost of $mathcalO(log N)2D(loglog N)2)$ can be used to perform inference.
arXiv Detail & Related papers (2020-08-01T19:23:34Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
We consider the problem of learning the best-fitting single neuron as measured by the expected square loss.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
arXiv Detail & Related papers (2020-05-29T07:20:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.