Allocating Variance to Maximize Expectation
- URL: http://arxiv.org/abs/2502.18463v1
- Date: Tue, 25 Feb 2025 18:59:46 GMT
- Title: Allocating Variance to Maximize Expectation
- Authors: Renato Purita Paes Leme, Cliff Stein, Yifeng Teng, Pratik Worah,
- Abstract summary: We design efficient approximation algorithms for maximizing the expectation of the supremum of families of Gaussian random variables.<n>Such expectation problems occur in diverse applications, ranging from utility auctions to learning mixture models in quantitative genetics.
- Score: 2.25491649634702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We design efficient approximation algorithms for maximizing the expectation of the supremum of families of Gaussian random variables. In particular, let $\mathrm{OPT}:=\max_{\sigma_1,\cdots,\sigma_n}\mathbb{E}\left[\sum_{j=1}^{m}\max_{i\in S_j} X_i\right]$, where $X_i$ are Gaussian, $S_j\subset[n]$ and $\sum_i\sigma_i^2=1$, then our theoretical results include: - We characterize the optimal variance allocation -- it concentrates on a small subset of variables as $|S_j|$ increases, - A polynomial time approximation scheme (PTAS) for computing $\mathrm{OPT}$ when $m=1$, and - An $O(\log n)$ approximation algorithm for computing $\mathrm{OPT}$ for general $m>1$. Such expectation maximization problems occur in diverse applications, ranging from utility maximization in auctions markets to learning mixture models in quantitative genetics.
Related papers
- Robust Scatter Matrix Estimation for Elliptical Distributions in Polynomial Time [2.311583680973075]
We design time algorithms that achieve dimension-independent error in Frobenius norm.<n>Under a mild assumption on the eigenvalues of the scatter matrix $Sigma$, for every $t in mathbbN$, we design an estimator that, given $n = dO(t)$ samples, in time $nO(t)$ finds $hatSigma.
arXiv Detail & Related papers (2025-02-10T15:31:57Z) - Implicit High-Order Moment Tensor Estimation and Learning Latent Variable Models [39.33814194788341]
We study the task of learning latent-variable models.
Motivated by such applications, we develop a general efficient algorithm for implicit moment computation.
By leveraging our general algorithm, we obtain the first-time learners for the following models.
arXiv Detail & Related papers (2024-11-23T23:13:24Z) - Iterative thresholding for non-linear learning in the strong $\varepsilon$-contamination model [3.309767076331365]
We derive approximation bounds for learning single neuron models using thresholded descent.
We also study the linear regression problem, where $sigma(mathbfx) = mathbfx$.
arXiv Detail & Related papers (2024-09-05T16:59:56Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - A Fast Algorithm for Adaptive Private Mean Estimation [5.090363690988394]
We design an $(varepsilon, delta)$-differentially private algorithm that is adaptive to $Sigma$.
The estimator achieves optimal rates of convergence with respect to the induced Mahalanobis norm $||cdot||_Sigma$.
arXiv Detail & Related papers (2023-01-17T18:44:41Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Small Covers for Near-Zero Sets of Polynomials and Learning Latent
Variable Models [56.98280399449707]
We show that there exists an $epsilon$-cover for $S$ of cardinality $M = (k/epsilon)O_d(k1/d)$.
Building on our structural result, we obtain significantly improved learning algorithms for several fundamental high-dimensional probabilistic models hidden variables.
arXiv Detail & Related papers (2020-12-14T18:14:08Z) - Convergence of Sparse Variational Inference in Gaussian Processes
Regression [29.636483122130027]
We show that a method with an overall computational cost of $mathcalO(log N)2D(loglog N)2)$ can be used to perform inference.
arXiv Detail & Related papers (2020-08-01T19:23:34Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
We consider the problem of learning the best-fitting single neuron as measured by the expected square loss.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
arXiv Detail & Related papers (2020-05-29T07:20:35Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
We study the problem of finding a basis $S$ of $M$ such that $det(sum_i in Sv_i v_i v_itop)$ is maximized.
This problem appears in a diverse set of areas such as experimental design, fair allocation of goods, network design, and machine learning.
arXiv Detail & Related papers (2020-04-16T19:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.