Quantum gradient evaluation through quantum non-demolition measurements
- URL: http://arxiv.org/abs/2301.07128v2
- Date: Mon, 27 Mar 2023 14:58:06 GMT
- Title: Quantum gradient evaluation through quantum non-demolition measurements
- Authors: Paolo Solinas, Simone Caletti and Giovanni Minuto
- Abstract summary: We discuss a Quantum Non-Demolition Measurement protocol to estimate the derivatives of a cost function with a quantum computer.
This is a key step for the implementation of variational quantum circuits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We discuss a Quantum Non-Demolition Measurement (QNDM) protocol to estimate
the derivatives of a cost function with a quantum computer. %This is a key step
for the implementation of variational quantum circuits. The cost function,
which is supposed to be classically hard to evaluate, is associated with the
average value of a quantum operator. Then a quantum computer is used to
efficiently extract information about the function and its derivative by
evolving the system with a so-called variational quantum circuit. To this aim,
we propose to use a quantum detector that allows us to directly estimate the
derivatives of an observable, i.e., the derivative of the cost function. With
respect to the standard direct measurement approach, this leads to a reduction
of the number of circuit iterations needed to run the variational quantum
circuits. The advantage increases if we want to estimate the higher-order
derivatives. We also show that the presented approach can lead to a further
advantage in terms of the number of total logical gates needed to run the
variational quantum circuits. These results make the QNDM a valuable
alternative to implementing the variational quantum circuits.
Related papers
- A Quantum Approximate Optimization Method For Finding Hadamard Matrices [0.0]
We propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer.
We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer.
arXiv Detail & Related papers (2024-08-15T06:25:50Z) - Learning the expressibility of quantum circuit ansatz using transformer [5.368973814856243]
We propose using a transformer model to predict the expressibility of quantum circuit ansatze.
This research can enhance the understanding of the expressibility of quantum circuit ansatze and advance quantum architecture search algorithms.
arXiv Detail & Related papers (2024-05-29T07:34:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Maximising Quantum-Computing Expressive Power through Randomised
Circuits [4.604271571912073]
variational quantum algorithms (VQAs) have emerged as a promising avenue to obtain quantum advantage.
We numerically demonstrate a novel approach for VQAs, utilizing randomised quantum circuits to generate the variational wavefunction.
This random-circuit approach presents a trade-off between the expressive power of the variational wavefunction and time cost.
arXiv Detail & Related papers (2023-12-04T15:04:42Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Proof-of-principle experimental demonstration of quantum gate
verification [1.9852463786440127]
Recently, a scheme called quantum gate verification (QGV) has been proposed, which can verifies quantum gates with near-optimal efficiency.
We show that for a single-qubit quantum gate, only $sim300$ samples are needed to confirm the fidelity of the quantum gate to be at least $97%$ with a $99%$ confidence level.
The QGV method has the potential to be widely used for the evaluation of quantum devices in various quantum information applications.
arXiv Detail & Related papers (2021-07-28T16:20:27Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.