Detecting and Ranking Causal Anomalies in End-to-End Complex System
- URL: http://arxiv.org/abs/2301.07281v2
- Date: Fri, 3 May 2024 05:13:55 GMT
- Title: Detecting and Ranking Causal Anomalies in End-to-End Complex System
- Authors: Ching Chang, Wen-Chih Peng,
- Abstract summary: We propose a framework called Ranking Causal Anomalies in End-to-End System (RCAE2E)
Based on these problems, we propose a framework called Ranking Causal Anomalies in End-to-End System (RCAE2E)
- Score: 10.02817768857185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of technology, the automated monitoring systems of large-scale factories are becoming more and more important. By collecting a large amount of machine sensor data, we can have many ways to find anomalies. We believe that the real core value of an automated monitoring system is to identify and track the cause of the problem. The most famous method for finding causal anomalies is RCA, but there are many problems that cannot be ignored. They used the AutoRegressive eXogenous (ARX) model to create a time-invariant correlation network as a machine profile, and then use this profile to track the causal anomalies by means of a method called fault propagation. There are two major problems in describing the behavior of a machine by using the correlation network established by ARX: (1) It does not take into account the diversity of states (2) It does not separately consider the correlations with different time-lag. Based on these problems, we propose a framework called Ranking Causal Anomalies in End-to-End System (RCAE2E), which completely solves the problems mentioned above. In the experimental part, we use synthetic data and real-world large-scale photoelectric factory data to verify the correctness and existence of our method hypothesis.
Related papers
- Disentangled Causal Graph Learning for Online Unsupervised Root Cause
Analysis [49.910053255238566]
Root cause analysis (RCA) can identify the root causes of system faults/failures by analyzing system monitoring data.
Previous research has mostly focused on developing offline RCA algorithms, which often require manually initiating the RCA process.
We propose CORAL, a novel online RCA framework that can automatically trigger the RCA process and incrementally update the RCA model.
arXiv Detail & Related papers (2023-05-18T01:27:48Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Causal Discovery from Sparse Time-Series Data Using Echo State Network [0.0]
Causal discovery between collections of time-series data can help diagnose causes of symptoms and hopefully prevent faults before they occur.
We propose a new system comprised of two parts, the first part fills missing data with a Gaussian Process Regression, and the second part leverages an Echo State Network.
We report on their corresponding Matthews Correlation Coefficient(MCC) and Receiver Operating Characteristic curves (ROC) and show that the proposed system outperforms existing algorithms.
arXiv Detail & Related papers (2022-01-09T05:55:47Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
We propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M)
We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD)
Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bigressive LSTM with Attention) to capture temporal dependence from time-series data.
arXiv Detail & Related papers (2021-07-27T06:48:20Z) - Discriminative-Generative Dual Memory Video Anomaly Detection [81.09977516403411]
Recently, people tried to use a few anomalies for video anomaly detection (VAD) instead of only normal data during the training process.
We propose a DiscRiminative-gEnerative duAl Memory (DREAM) anomaly detection model to take advantage of a few anomalies and solve data imbalance.
arXiv Detail & Related papers (2021-04-29T15:49:01Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Root Cause Detection Among Anomalous Time Series Using Temporal State
Alignment [0.0]
We propose a method that isolates the root cause of an anomaly by analyzing the patterns in time series fluctuations.
The idea is to track the propagation of the effect when a problem causes unaligned but homogeneous shifts of the underlying states.
We evaluate our approach by finding the root cause of anomalies in Zillows clickstream data by identifying causal patterns among a set of observed fluctuations.
arXiv Detail & Related papers (2020-01-04T08:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.