論文の概要: Robust Knowledge Adaptation for Federated Unsupervised Person ReID
- arxiv url: http://arxiv.org/abs/2301.07320v1
- Date: Wed, 18 Jan 2023 05:46:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-19 16:46:18.454937
- Title: Robust Knowledge Adaptation for Federated Unsupervised Person ReID
- Title(参考訳): 教師なしreidにおけるロバストな知識適応
- Authors: Jianfeng Weng, Kun Hu, Tingting Yao, Jingya Wang, Zhiyong Wang
- Abstract要約: Person ReIDは、異なる(クライアント)間で最小限の機密データを共有することを目指す
Person ReID に対して FedUCC 学習法を提案する。
詳細は、ディープニューラルネットワークを用いて、汎用知識、専門知識、パッチ知識が発見される。
- 参考スコア(独自算出の注目度): 14.861949635014449
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Person Re-identification (ReID) has been extensively studied in recent years
due to the increasing demand in public security. However, collecting and
dealing with sensitive personal data raises privacy concerns. Therefore,
federated learning has been explored for Person ReID, which aims to share
minimal sensitive data between different parties (clients). However, existing
federated learning based person ReID methods generally rely on laborious and
time-consuming data annotations and it is difficult to guarantee cross-domain
consistency. Thus, in this work, a federated unsupervised cluster-contrastive
(FedUCC) learning method is proposed for Person ReID. FedUCC introduces a
three-stage modelling strategy following a coarse-to-fine manner. In detail,
generic knowledge, specialized knowledge and patch knowledge are discovered
using a deep neural network. This enables the sharing of mutual knowledge among
clients while retaining local domain-specific knowledge based on the kinds of
network layers and their parameters. Comprehensive experiments on 8 public
benchmark datasets demonstrate the state-of-the-art performance of our proposed
method.
- Abstract(参考訳): 個人再識別(ReID)は近年,公安の需要の増加により広く研究されている。
しかし、機密性の高い個人情報の収集と処理はプライバシーの懸念を引き起こす。
そのため、異なる団体(団体)間で最小限の機密データを共有することを目的としたPerson ReIDのために、連合学習が検討されている。
しかし、既存のフェデレート学習ベースの人物ReIDメソッドは一般的に、手間と時間を要するデータアノテーションに依存しており、ドメイン間の一貫性を保証することは困難である。
そこで本研究では,Person ReIDに対して,FedUCC(Federated Unsupervised Cluster-Contrastive)学習法を提案する。
FedUCCは粗い方法で3段階のモデリング戦略を導入した。
詳細は、ディープニューラルネットワークを用いて、汎用知識、専門知識、パッチ知識が発見される。
これにより、ネットワーク層の種類とパラメータに基づいて、ローカルドメイン固有の知識を保持しながら、クライアント間での相互知識の共有が可能になる。
8つの公開ベンチマークデータセットの総合的な実験により,提案手法の最先端性能が実証された。
関連論文リスト
- FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
フェデレーテッド・ラーニング(Federated Learning)は、分散型機械学習パラダイムをプライバシ保護するものだ。
近年の研究では、Deep Leakageと呼ばれる勾配技術によって、民間の真実データを復元できることが判明している。
本稿では、Deep Leakage攻撃と防御を評価するための総合的なベンチマークであるFEDLAD Framework(Federated Evaluation of Deep Leakage Attacks and Defenses)を紹介する。
論文 参考訳(メタデータ) (2024-11-05T11:42:26Z) - Auto-selected Knowledge Adapters for Lifelong Person Re-identification [54.42307214981537]
Lifelong Person Re-Identificationは、異なる時間と場所にわたる重複しないデータセットから継続的に学習するシステムを必要とする。
リハーサルのない、あるいはリハーサルベースの既存のアプローチは、依然として破滅的な忘れ込みの問題に悩まされている。
本稿では,知識アダプタを採用した新しいフレームワークであるAdalReIDと,生涯学習のためのパラメータフリー自動選択機構を提案する。
論文 参考訳(メタデータ) (2024-05-29T11:42:02Z) - KnFu: Effective Knowledge Fusion [5.305607095162403]
フェデレートラーニング(FL)は、従来の集中型ラーニングのアプローチに代わる顕著な代替手段として登場した。
本稿では,各クライアントに対してセマンティックな隣人の効果的な知識を融合させるためのみに,局所モデルの知識を評価するEffective Knowledge Fusion(KnFu)アルゴリズムを提案する。
この研究の重要な結論は、大規模でヘテロジニアスなローカルデータセットを持つシナリオでは、知識融合ベースのソリューションよりも局所的なトレーニングが望ましい、ということである。
論文 参考訳(メタデータ) (2024-03-18T15:49:48Z) - A chaotic maps-based privacy-preserving distributed deep learning for
incomplete and Non-IID datasets [1.30536490219656]
フェデレート・ラーニング(Federated Learning)は、センシティブなデータを持つ複数の参加者の間でディープラーニングモデルのトレーニングを可能にする機械学習アプローチである。
本研究では,セキュアなフェデレート学習手法と付加的なプライバシー層を用いて,非IID課題に対処する手法を提案する。
論文 参考訳(メタデータ) (2024-02-15T17:49:50Z) - Factor-Assisted Federated Learning for Personalized Optimization with
Heterogeneous Data [6.024145412139383]
フェデレートラーニング(Federated Learning)は、データプライバシ保護を目的とした、新興の分散機械学習フレームワークである。
異なるクライアントのデータには、共通の知識とパーソナライズされた知識の両方が含まれている。
我々は、FedSplitと呼ばれる異種データのための、新しい個人化されたフェデレーション学習フレームワークを開発した。
論文 参考訳(メタデータ) (2023-12-07T13:05:47Z) - Selective Knowledge Sharing for Privacy-Preserving Federated
Distillation without A Good Teacher [52.2926020848095]
フェデレーション学習は、ホワイトボックス攻撃に脆弱で、異種クライアントへの適応に苦慮している。
本稿では,選択的FD(Selective-FD)と呼ばれるFDのための選択的知識共有機構を提案する。
論文 参考訳(メタデータ) (2023-04-04T12:04:19Z) - Learning with Recoverable Forgetting [77.56338597012927]
学習wIth Recoverable Forgettingは、タスクまたはサンプル固有の知識の除去とリカバリを明示的に処理する。
具体的には、LIRFは2つの革新的なスキーム、すなわち知識預金と離脱をもたらす。
いくつかのデータセットで実験を行い、提案したLIRF戦略が一般化能力を満足させる結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-07-17T16:42:31Z) - Exploring the Distributed Knowledge Congruence in Proxy-data-free
Federated Distillation [20.24005399782197]
フェデレートラーニング(Federated Learning)は、プライバシを保存する機械学習パラダイムである。
最近のプロキシデータフリーなFDアプローチは、追加の公開データの必要性を排除できるが、局所的な知識の相違に悩まされている。
分散知識合同(FedDKC)に基づくプロキシフリーFDアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-14T15:39:22Z) - Improving Federated Learning Face Recognition via Privacy-Agnostic
Clusters [7.437386882362172]
この研究は、フェデレートされた顔認識を改善するためのフレームワークであるPrivacyFaceを提案する。
第一に, 局所的局所的クラスタリング機構は, 局所的なクラス中心から沈殿したクラスターを蒸留するために提案されている。
第二に、コンセンサス対応の認識損失は、その後、クライアント間のグローバルなコンセンサスを促進し、それによってより差別的な特徴が生まれる。
論文 参考訳(メタデータ) (2022-01-29T01:27:04Z) - Learning Open Set Network with Discriminative Reciprocal Points [70.28322390023546]
オープンセット認識は、事前に定義されたクラスからサンプルを同時に分類し、残りを「未知」として識別することを目的としている。
本稿では,各既知圏に対応するクラス外空間のポテンシャル表現であるReciprocal Pointを提案する。
相互点によって構成される有界空間に基づいて、未知のリスクは多圏相互作用によって減少する。
論文 参考訳(メタデータ) (2020-10-31T03:20:31Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。