論文の概要: Concurrent vertical and horizontal federated learning with fuzzy cognitive maps
- arxiv url: http://arxiv.org/abs/2412.12844v1
- Date: Tue, 17 Dec 2024 12:11:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:57:52.233668
- Title: Concurrent vertical and horizontal federated learning with fuzzy cognitive maps
- Title(参考訳): ファジィ認知マップを用いた垂直・水平連成学習の同時学習
- Authors: Jose L Salmeron, Irina Arévalo,
- Abstract要約: 本研究ではファジィ認知地図を用いた新しいフェデレーション学習フレームワークを提案する。
多様なデータ分散と非識別分散機能によって引き起こされる課題を包括的に解決するように設計されている。
その結果,プライバシと機密性の基準を維持しつつ,望ましい学習結果を達成するためのアプローチの有効性が示された。
- 参考スコア(独自算出の注目度): 1.104960878651584
- License:
- Abstract: Data privacy is a major concern in industries such as healthcare or finance. The requirement to safeguard privacy is essential to prevent data breaches and misuse, which can have severe consequences for individuals and organisations. Federated learning is a distributed machine learning approach where multiple participants collaboratively train a model without compromising the privacy of their data. However, a significant challenge arises from the differences in feature spaces among participants, known as non-IID data. This research introduces a novel federated learning framework employing fuzzy cognitive maps, designed to comprehensively address the challenges posed by diverse data distributions and non-identically distributed features in federated settings. The proposal is tested through several experiments using four distinct federation strategies: constant-based, accuracy-based, AUC-based, and precision-based weights. The results demonstrate the effectiveness of the approach in achieving the desired learning outcomes while maintaining privacy and confidentiality standards.
- Abstract(参考訳): データプライバシは、医療や金融といった業界において大きな関心事である。
プライバシーを守るための要件は、データ漏洩や誤用を防ぐために不可欠であり、個人や組織に深刻な影響をもたらす可能性がある。
フェデレーション学習(Federated Learning)は、複数の参加者がデータのプライバシを損なうことなく、協力的にモデルをトレーニングする分散機械学習アプローチである。
しかし、非IIDデータとして知られる参加者間の特徴空間の違いから大きな課題が生じる。
本研究では,ファジィ認知マップを用いた新しいフェデレーション学習フレームワークを提案する。
この提案は、定数ベース、精度ベース、AUCベース、精度ベース重みの4つの異なるフェデレーション戦略を用いて、いくつかの実験を通して検証されている。
その結果,プライバシと機密性の基準を維持しつつ,望ましい学習結果を達成するためのアプローチの有効性が示された。
関連論文リスト
- TAPFed: Threshold Secure Aggregation for Privacy-Preserving Federated Learning [16.898842295300067]
フェデレートラーニング(Federated Learning)は、複数のパーティが個人データを公開せずに機械学習モデルを協調的にトレーニングできるようにすることで、プライバシを高めるコンピューティングパラダイムである。
従来のフェデレートされた学習プラットフォームは、勾配の交換によるプライバシーリークによってプライバシーを保証できない。
本稿では,悪意あるアクターを持つ複数の分散アグリゲータのコンテキストにおいて,プライバシ保護のためのフェデレーション学習を実現するためのTAPFedを提案する。
論文 参考訳(メタデータ) (2025-01-09T08:24:10Z) - A chaotic maps-based privacy-preserving distributed deep learning for
incomplete and Non-IID datasets [1.30536490219656]
フェデレート・ラーニング(Federated Learning)は、センシティブなデータを持つ複数の参加者の間でディープラーニングモデルのトレーニングを可能にする機械学習アプローチである。
本研究では,セキュアなフェデレート学習手法と付加的なプライバシー層を用いて,非IID課題に対処する手法を提案する。
論文 参考訳(メタデータ) (2024-02-15T17:49:50Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
我々は,意図に基づくクライアント選択機構を備えた新しいPFLアルゴリズムであるFedACSを提案する。
FedACSは、類似したデータ分散を持つクライアント間のコラボレーションを強化するためのアテンションメカニズムを統合している。
CIFAR10とFMNISTの実験は、FedACSの優位性を検証する。
論文 参考訳(メタデータ) (2023-12-23T03:31:46Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
フェデレーション・アンラーニングは、フェデレーション・システムで訓練されたモデルからデータを選択的に除去することを可能にする。
本稿では,既存のフェデレーション・アンラーニング手法について検討し,アルゴリズムの効率,モデル精度への影響,プライバシ保護の有効性について検討する。
フェデレートされたアンラーニング手法を評価するための統一ベンチマークであるOpenFederatedUnlearningフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-30T01:34:33Z) - Fairness and Privacy in Federated Learning and Their Implications in
Healthcare [0.0]
本稿では,研究におけるフェアフェデレーション学習の典型的なライフサイクルを概説するとともに,実装におけるフェアネスの現状を考慮に入れた最新の分類法を提案する。
論文 参考訳(メタデータ) (2023-08-15T14:32:16Z) - DBFed: Debiasing Federated Learning Framework based on
Domain-Independent [15.639705798326213]
本稿では,ドメイン非依存に基づくデバイアス学習フレームワークを提案する。これは,クライアント側トレーニング中に機密属性を明示的に符号化することで,モデルバイアスを緩和する。
本稿では,3つの実データセットについて実験を行い,精度と公平性の5つの評価指標を用いてモデルの効果を定量的に評価する。
論文 参考訳(メタデータ) (2023-07-10T14:39:57Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
対人訓練と連合学習の組み合わせは、望ましくない頑丈さの劣化につながる可能性がある。
我々は、Slack Federated Adversarial Training (SFAT)と呼ばれる新しいフレームワークを提案する。
各種ベンチマークおよび実世界のデータセットに対するSFATの合理性と有効性を検証する。
論文 参考訳(メタデータ) (2023-03-01T06:16:15Z) - Towards Federated Long-Tailed Learning [76.50892783088702]
データプライバシとクラス不均衡は、多くの機械学習タスクの例外ではなく、標準である。
最近の試みでは、広範にわたるプライベートデータから学習する問題に対処する一方で、長い尾を持つデータから学ぶことが試みられている。
本稿では,プライバシ保護フェデレーション学習(FL)フレームワークのコンテキスト下での長期的データ分散(LT)学習に焦点を当てた。
論文 参考訳(メタデータ) (2022-06-30T02:34:22Z) - Decentralized Distributed Learning with Privacy-Preserving Data
Synthesis [9.276097219140073]
医療分野では、患者と臨床データの均一性を生かして、多施設共同研究がより一般化可能な発見をもたらすことがしばしばある。
最近のプライバシー規制は、データの共有を妨げ、その結果、診断と予後をサポートする機械学習ベースのソリューションを考案する。
ローカルノードの機能を統合する分散分散手法を提案し、プライバシを維持しながら複数のデータセットをまたいで一般化可能なモデルを提供する。
論文 参考訳(メタデータ) (2022-06-20T23:49:38Z) - On Deep Learning with Label Differential Privacy [54.45348348861426]
ラベルは機密性があり、保護されるべきであるとするマルチクラス分類について検討する。
本稿では,ラベル差分プライバシを用いたディープニューラルネットワークのトレーニングアルゴリズムを提案し,いくつかのデータセットで評価を行う。
論文 参考訳(メタデータ) (2021-02-11T15:09:06Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。