論文の概要: A chaotic maps-based privacy-preserving distributed deep learning for
incomplete and Non-IID datasets
- arxiv url: http://arxiv.org/abs/2402.10145v1
- Date: Thu, 15 Feb 2024 17:49:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 14:36:24.186437
- Title: A chaotic maps-based privacy-preserving distributed deep learning for
incomplete and Non-IID datasets
- Title(参考訳): 不完全および非IIDデータセットのためのカオスマップに基づくプライバシー保護型分散ディープラーニング
- Authors: Irina Ar\'evalo and Jose L. Salmeron
- Abstract要約: フェデレート・ラーニング(Federated Learning)は、センシティブなデータを持つ複数の参加者の間でディープラーニングモデルのトレーニングを可能にする機械学習アプローチである。
本研究では,セキュアなフェデレート学習手法と付加的なプライバシー層を用いて,非IID課題に対処する手法を提案する。
- 参考スコア(独自算出の注目度): 1.30536490219656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning is a machine learning approach that enables the training
of a deep learning model among several participants with sensitive data that
wish to share their own knowledge without compromising the privacy of their
data. In this research, the authors employ a secured Federated Learning method
with an additional layer of privacy and proposes a method for addressing the
non-IID challenge. Moreover, differential privacy is compared with
chaotic-based encryption as layer of privacy. The experimental approach
assesses the performance of the federated deep learning model with differential
privacy using both IID and non-IID data. In each experiment, the Federated
Learning process improves the average performance metrics of the deep neural
network, even in the case of non-IID data.
- Abstract(参考訳): フェデレーション学習(federated learning)は、データプライバシを損なうことなく、自身の知識を共有したいと願う機密データを持つ、複数の参加者によるディープラーニングモデルのトレーニングを可能にする、マシンラーニングのアプローチである。
本研究では,セキュアなフェデレート学習手法と付加的なプライバシー層を用いて,非IID課題に対処する手法を提案する。
さらに、差分プライバシーはカオスベースの暗号化をプライバシー層として比較する。
実験手法は,IDDデータと非IIDデータの両方を用いて,差分プライバシーを用いたフェデレーション深層学習モデルの性能を評価する。
各実験において、フェデレーション学習プロセスは、非iidデータの場合であっても、ディープニューラルネットワークの平均パフォーマンスメトリクスを改善する。
関連論文リスト
- Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Privacy-preserving Quantification of Non-IID Degree in Federated Learning [22.194684042923406]
フェデレーテッド・ラーニング(FL)は、生データを共有することなく、複数のコラボレータに対して、マシンラーニングに対するプライバシ保護アプローチを提供する。
異なるクライアントにまたがる非独立かつ非独立に分散された(非IID)データセットの存在は、FLにとって大きな課題である。
本稿では,累積分布関数を用いて,フェデレーション環境における非IID度を定量的に定義する。
論文 参考訳(メタデータ) (2024-06-14T03:08:53Z) - Approximate Gradient Coding for Privacy-Flexible Federated Learning with Non-IID Data [9.984630251008868]
この研究は、フェデレートラーニングにおける非IIDデータとストラグラー/ドロップアウトの課題に焦点を当てる。
クライアントのローカルデータの一部を非プライベートとしてモデル化する、プライバシフレキシブルなパラダイムを導入し、検討する。
論文 参考訳(メタデータ) (2024-04-04T15:29:50Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
非IIDデータの処理は、フェデレーション学習における最も難しい問題の1つである。
本稿では, フェデレート学習における非IIDデータとロングテールデータの結合問題について検討し, フェデレート・アンサンブル蒸留と不均衡(FEDIC)という対応ソリューションを提案する。
FEDICはモデルアンサンブルを使用して、非IIDデータでトレーニングされたモデルの多様性を活用する。
論文 参考訳(メタデータ) (2022-04-30T06:17:36Z) - Non-IID data and Continual Learning processes in Federated Learning: A
long road ahead [58.720142291102135]
フェデレートラーニング(Federated Learning)は、複数のデバイスや機関が、データをプライベートに保存しながら、機械学習モデルを協調的にトレーニングすることを可能にする、新しいフレームワークである。
本研究では,データの統計的不均一性を正式に分類し,それに直面することのできる最も顕著な学習戦略をレビューする。
同時に、継続学習のような他の機械学習フレームワークからのアプローチを導入し、データの不均一性にも対処し、フェデレートラーニング設定に容易に適応できるようにします。
論文 参考訳(メタデータ) (2021-11-26T09:57:11Z) - Federated Learning on Non-IID Data: A Survey [11.431837357827396]
フェデレーション学習(Federated Learning)は、プライバシ保護のための分散機械学習フレームワークである。
連合学習で訓練されたモデルは、通常、標準集中学習モードで訓練されたモデルよりもパフォーマンスが劣る。
論文 参考訳(メタデータ) (2021-06-12T19:45:35Z) - On Deep Learning with Label Differential Privacy [54.45348348861426]
ラベルは機密性があり、保護されるべきであるとするマルチクラス分類について検討する。
本稿では,ラベル差分プライバシを用いたディープニューラルネットワークのトレーニングアルゴリズムを提案し,いくつかのデータセットで評価を行う。
論文 参考訳(メタデータ) (2021-02-11T15:09:06Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - Federated Learning and Differential Privacy: Software tools analysis,
the Sherpa.ai FL framework and methodological guidelines for preserving data
privacy [8.30788601976591]
本稿では,フェデレートラーニングと差分プライバシの全体観に基づいて構築されたSherpa.aiフェデレーションラーニングフレームワークを提案する。
本稿では,Sherpa.aiフェデレートラーニングフレームワークで方法論ガイドラインに従う方法について,分類と回帰ユースケースを用いて示す。
論文 参考訳(メタデータ) (2020-07-02T06:47:35Z) - Anonymizing Data for Privacy-Preserving Federated Learning [3.3673553810697827]
我々は,フェデレートラーニングの文脈において,プライバシを提供するための最初の構文的アプローチを提案する。
当社のアプローチは,プライバシの保護レベルをサポートしながら,実用性やモデルの性能を最大化することを目的としている。
医療領域における2つの重要な課題について,100万人の患者の実世界電子健康データを用いて包括的実証評価を行った。
論文 参考訳(メタデータ) (2020-02-21T02:30:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。