Learning Interpolations between Boltzmann Densities
- URL: http://arxiv.org/abs/2301.07388v5
- Date: Tue, 30 May 2023 07:40:03 GMT
- Title: Learning Interpolations between Boltzmann Densities
- Authors: B\'alint M\'at\'e, Fran\c{c}ois Fleuret
- Abstract summary: We introduce a training objective for continuous normalizing flows in the absence of samples.
We find a time-dependent vector field $V_t$ that transports samples along the family $p_t$ of densities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a training objective for continuous normalizing flows that can
be used in the absence of samples but in the presence of an energy function.
Our method relies on either a prescribed or a learnt interpolation $f_t$ of
energy functions between the target energy $f_1$ and the energy function of a
generalized Gaussian $f_0(x) = ||x/\sigma||_p^p$. The interpolation of energy
functions induces an interpolation of Boltzmann densities $p_t \propto
e^{-f_t}$ and we aim to find a time-dependent vector field $V_t$ that
transports samples along the family $p_t$ of densities. The condition of
transporting samples along the family $p_t$ is equivalent to satisfying the
continuity equation with $V_t$ and $p_t = Z_t^{-1}e^{-f_t}$. Consequently, we
optimize $V_t$ and $f_t$ to satisfy this partial differential equation. We
experimentally compare the proposed training objective to the reverse
KL-divergence on Gaussian mixtures and on the Boltzmann density of a quantum
mechanical particle in a double-well potential.
Related papers
- Boltzmann-Aligned Inverse Folding Model as a Predictor of Mutational Effects on Protein-Protein Interactions [48.58317905849438]
Predicting the change in binding free energy ($Delta Delta G$) is crucial for understanding and modulating protein-protein interactions.
We propose the Boltzmann Alignment technique to transfer knowledge from pre-trained inverse folding models to $Delta Delta G$ prediction.
arXiv Detail & Related papers (2024-10-12T14:13:42Z) - Neural Sampling from Boltzmann Densities: Fisher-Rao Curves in the Wasserstein Geometry [1.609940380983903]
We deal with the task of sampling from an unnormalized Boltzmann density $rho_D$ by learning a Boltzmann curve given by $f_t$.
Inspired by M'at'e and Fleuret, we propose an which parametrizes only $f_t$ and fixes an appropriate $v_t$.
This corresponds to the Wasserstein flow of the Kullback-Leibler divergence related to Langevin dynamics.
arXiv Detail & Related papers (2024-10-04T09:54:11Z) - Quantum connection, charges and virtual particles [65.268245109828]
A quantum bundle $L_hbar$ is endowed with a connection $A_hbar$ and its sections are standard wave functions $psi$ obeying the Schr"odinger equation.
We will lift the bundles $L_Cpm$ and connection $A_hbar$ on them to the relativistic phase space $T*R3,1$ and couple them to the Dirac spinor bundle describing both particles and antiparticles.
arXiv Detail & Related papers (2023-10-10T10:27:09Z) - Dynamically Assisted Tunneling in the Floquet Picture [0.0]
We study how tunneling through a potential barrier can be enhanced by an additional harmonically electric field.
We find distinct signatures of resonances when the incident energy $E$ equals the driving frequency.
We consider the truncated Coulomb potential relevant for nuclear fusion.
arXiv Detail & Related papers (2023-09-21T16:09:17Z) - Thermalization in many-fermion quantum systems with one- plus random
$k$-body interactions [2.28438857884398]
We study thermalization in finite many-fermion systems with random $k$-body interactions in presence of a mean-field.
For higher body rank of interaction $k$, system thermalizes faster.
arXiv Detail & Related papers (2022-06-21T15:24:40Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
We prove a Lipschitzness lower bound $Omega(sqrtn/p)$ of robustness of interpolating neural network parameters on arbitrary distributions.
We then show the potential benefit of overparametrization for smooth data when $n=mathrmpoly(d)$.
We disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=exp(omega(d))$.
arXiv Detail & Related papers (2022-02-23T16:10:23Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z) - Structure of wavefunction for interacting bosons in mean-field with
random $k$-body interactions [2.28438857884398]
Wavefunction structure is analyzed for dense interacting many-boson systems using Hamiltonian $H$.
In the first analysis, a complete analytical description of the variance of the strength function as a function of $lambda$ and $k$ is derived.
In the second analysis, this interpolating form of the strength function is utilized to describe the fidelity decay after $k$-body interaction quench.
arXiv Detail & Related papers (2020-11-29T07:57:18Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
Solving optimal transport with an entropic regularization requires computing a $ntimes n$ kernel matrix that is repeatedly applied to a vector.
We propose to use instead ground costs of the form $c(x,y)=-logdotpvarphi(x)varphi(y)$ where $varphi$ is a map from the ground space onto the positive orthant $RRr_+$, with $rll n$.
arXiv Detail & Related papers (2020-06-12T10:21:40Z) - Approximate Solutions to the Klein-Fock-Gordon Equation for the sum of
Coulomb and Ring-Shaped like potentials [0.0]
We consider the quantum mechanical problem of the motion of a spinless charged relativistic particle with mass$M$.
It is shown that the system under consideration has both a discrete at $left|Eright|Mc2 $ and a continuous at $left|Eright|>Mc2 $ energy spectra.
It is also shown that relativistic expressions for wave functions, energy spectra and group generators in the limit $ctoinfty $ go over into the corresponding expressions for the nonrelativistic problem.
arXiv Detail & Related papers (2020-04-27T08:49:10Z) - Spectral density estimation with the Gaussian Integral Transform [91.3755431537592]
spectral density operator $hatrho(omega)=delta(omega-hatH)$ plays a central role in linear response theory.
We describe a near optimal quantum algorithm providing an approximation to the spectral density.
arXiv Detail & Related papers (2020-04-10T03:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.