Autonomous Slalom Maneuver Based on Expert Drivers' Behavior Using
Convolutional Neural Network
- URL: http://arxiv.org/abs/2301.07424v1
- Date: Wed, 18 Jan 2023 10:47:43 GMT
- Title: Autonomous Slalom Maneuver Based on Expert Drivers' Behavior Using
Convolutional Neural Network
- Authors: Shafagh A. Pashaki, Ali Nahvi, Ahmad Ahmadi, Sajad Tavakoli, Shahin
Naeemi, Salar H. Shamchi
- Abstract summary: This paper presents a method to mimic drivers' behavior using a convolutional neural network (CNN)
CNN model computes the desired steering wheel angle and sends it to an adaptive PD controller.
In some trials, the presented method performed a smoother maneuver compared to the expert drivers.
- Score: 0.39146761527401425
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Lane changing and obstacle avoidance are one of the most important tasks in
automated cars. To date, many algorithms have been suggested that are generally
based on path trajectory or reinforcement learning approaches. Although these
methods have been efficient, they are not able to accurately imitate a smooth
path traveled by an expert driver. In this paper, a method is presented to
mimic drivers' behavior using a convolutional neural network (CNN). First,
seven features are extracted from a dataset gathered from four expert drivers
in a driving simulator. Then, these features are converted from 1D arrays to 2D
arrays and injected into a CNN. The CNN model computes the desired steering
wheel angle and sends it to an adaptive PD controller. Finally, the control
unit applies proper torque to the steering wheel. Results show that the CNN
model can mimic the drivers' behavior with an R2-squared of 0.83. Also, the
performance of the presented method was evaluated in the driving simulator for
17 trials, which avoided all traffic cones successfully. In some trials, the
presented method performed a smoother maneuver compared to the expert drivers.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers [0.4241054493737716]
This study implements, evaluating, and comparing the two DRL algorithms, Deep Q-networks (DQN) and Trust Region Policy Optimization (TRPO)
Models trained on the designed ComplexRoads environment can adapt well to other driving maneuvers with promising overall performance.
arXiv Detail & Related papers (2023-06-20T11:41:01Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
We present a system that enables an autonomous small-scale RC car to drive aggressively from visual observations using reinforcement learning (RL)
Our system, FastRLAP (faster lap), trains autonomously in the real world, without human interventions, and without requiring any simulation or expert demonstrations.
The resulting policies exhibit emergent aggressive driving skills, such as timing braking and acceleration around turns and avoiding areas which impede the robot's motion, approaching the performance of a human driver using a similar first-person interface over the course of training.
arXiv Detail & Related papers (2023-04-19T17:33:47Z) - Policy Pre-training for End-to-end Autonomous Driving via
Self-supervised Geometric Modeling [96.31941517446859]
We propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving.
We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos.
In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input.
In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only.
arXiv Detail & Related papers (2023-01-03T08:52:49Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Monocular Vision-based Prediction of Cut-in Maneuvers with LSTM Networks [0.0]
This study proposes a method to predict potentially dangerous cut-in maneuvers happening in the ego lane.
We follow a computer vision-based approach that only employs a single in-vehicle RGB camera.
Our algorithm consists of a CNN-based vehicle detection and tracking step and an LSTM-based maneuver classification step.
arXiv Detail & Related papers (2022-03-21T02:30:36Z) - Race Driver Evaluation at a Driving Simulator using a physical Model and
a Machine Learning Approach [1.9395755884693817]
We present a method to study and evaluate race drivers on a driver-in-the-loop simulator.
An overall performance score, a vehicle-trajectory score and a handling score are introduced to evaluate drivers.
We show that the neural network is accurate and robust with a root-mean-square error between 2-5% and can replace the optimisation based method.
arXiv Detail & Related papers (2022-01-27T07:32:32Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
We propose a neural network model based on trajectories information for driving behavior recognition.
We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
arXiv Detail & Related papers (2021-03-01T06:47:29Z) - Driving Style Representation in Convolutional Recurrent Neural Network
Model of Driver Identification [8.007800530105191]
We present a deep-neural-network architecture, we term D-CRNN, for building high-fidelity representations for driving style.
Using CNN, we capture semantic patterns of driver behavior from trajectories.
We then find temporal dependencies between these semantic patterns using RNN to encode driving style.
arXiv Detail & Related papers (2021-02-11T04:33:43Z) - DeepRacing: Parameterized Trajectories for Autonomous Racing [0.0]
We consider the challenging problem of high speed autonomous racing in a realistic Formula One environment.
DeepRacing is a novel end-to-end framework, and a virtual testbed for training and evaluating algorithms for autonomous racing.
This virtual testbed is released under an open-source license both as a standalone C++ API and as a binding to the popular Robot Operating System 2 (ROS2) framework.
arXiv Detail & Related papers (2020-05-06T21:35:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.