論文の概要: Adversarial AI in Insurance: Pervasiveness and Resilience
- arxiv url: http://arxiv.org/abs/2301.07520v1
- Date: Tue, 17 Jan 2023 08:49:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-19 15:50:30.432815
- Title: Adversarial AI in Insurance: Pervasiveness and Resilience
- Title(参考訳): 保険における敵対的AI:広範性とレジリエンス
- Authors: Elisa Luciano and Matteo Cattaneo and Ron Kenett
- Abstract要約: 本稿では,AIシステムを騙し,誤った出力を生成するために,修正された入力データを作成することからなる敵攻撃について検討する。
防御法や予防システムについては,少数発・ゼロ発のマルチラベリングを考慮し論じる。
関心が高まりつつある関連するトピックは、AIとMLコンポーネントを組み込んだシステムの検証と検証である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid and dynamic pace of Artificial Intelligence (AI) and Machine
Learning (ML) is revolutionizing the insurance sector. AI offers significant,
very much welcome advantages to insurance companies, and is fundamental to
their customer-centricity strategy. It also poses challenges, in the project
and implementation phase. Among those, we study Adversarial Attacks, which
consist of the creation of modified input data to deceive an AI system and
produce false outputs. We provide examples of attacks on insurance AI
applications, categorize them, and argue on defence methods and precautionary
systems, considering that they can involve few-shot and zero-shot
multilabelling. A related topic, with growing interest, is the validation and
verification of systems incorporating AI and ML components. These topics are
discussed in various sections of this paper.
- Abstract(参考訳): 人工知能(AI)と機械学習(ML)の急速かつダイナミックなペースは、保険セクターに革命をもたらしている。
aiは保険会社にとって重要な、非常に歓迎される利点を提供し、顧客中心の戦略の基盤である。
また、プロジェクトと実装フェーズにおいて、課題も生じます。
その中でも,aiシステムを欺いて偽の出力を生成するために,修正入力データを生成する敵攻撃について検討する。
我々は、保険aiアプリケーションに対する攻撃の例を示し、それらを分類し、防御方法と予防システムについて議論する。
関心が高まっている関連するトピックは、AIとMLコンポーネントを組み込んだシステムの検証と検証である。
本論文の様々なセクションでこれらのトピックについて論じる。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - A Survey on Offensive AI Within Cybersecurity [1.8206461789819075]
攻撃的AIに関する調査論文は、AIシステムに対する攻撃および使用に関する様々な側面を包括的にカバーする。
消費者、企業、公共のデジタルインフラストラクチャなど、さまざまな分野における攻撃的なAIプラクティスの影響を掘り下げる。
この論文では、敵対的な機械学習、AIモデルに対する攻撃、インフラストラクチャ、インターフェース、および情報収集、ソーシャルエンジニアリング、兵器化されたAIといった攻撃的テクニックについて検討する。
論文 参考訳(メタデータ) (2024-09-26T17:36:22Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
生成AI、特に大規模言語モデル(LLM)は、製品アプリケーションにますます統合される。
新たな攻撃面と脆弱性が出現し、自然言語やマルチモーダルシステムにおける敵の脅威に焦点を当てる。
レッドチーム(英語版)はこれらのシステムの弱点を積極的に識別する上で重要となり、ブルーチーム(英語版)はそのような敵の攻撃から保護する。
この研究は、生成AIシステムの保護のための学術的な洞察と実践的なセキュリティ対策のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-09-23T10:18:10Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - The AI Security Pyramid of Pain [0.18820558426635298]
私たちは、AI固有の脅威を分類し優先順位付けするために、Painのサイバーセキュリティピラミッドに適応するフレームワークであるPainのAIセキュリティピラミッドを紹介します。
このフレームワークは、さまざまなレベルのAI脅威を理解し、対処するための構造化されたアプローチを提供する。
論文 参考訳(メタデータ) (2024-02-16T21:14:11Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - AI Liability Insurance With an Example in AI-Powered E-diagnosis System [22.102728605081534]
我々はAIによるE-diagnosisシステムをAI責任保険の研究の例として用いている。
我々は、AI責任保険がコンプライアンス行動のインセンティブを与えるための規制機構として機能し、高品質なAIシステムの証明書として機能することを示した。
論文 参考訳(メタデータ) (2023-06-01T21:03:47Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Attacks, Defenses, And Tools: A Framework To Facilitate Robust AI/ML
Systems [2.5137859989323528]
ソフトウェアシステムは、人工知能(AI)と機械学習(ML)コンポーネントにますます依存している。
本稿では,AI対応システムに関連する攻撃や弱点を特徴付ける枠組みを提案する。
論文 参考訳(メタデータ) (2022-02-18T22:54:04Z) - Vulnerabilities of Connectionist AI Applications: Evaluation and Defence [0.0]
この記事では、コネクショナリスト人工知能(AI)アプリケーションのITセキュリティを扱い、完全性への脅威に焦点を当てます。
脅威の包括的リストと軽減の可能性は、最先端の文献をレビューすることによって提示される。
緩和に関する議論は同様に、AIシステム自体のレベルに限定されず、むしろサプライチェーンの文脈でAIシステムを見ることを提唱している。
論文 参考訳(メタデータ) (2020-03-18T12:33:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。