論文の概要: Point Cloud Data Simulation and Modelling with Aize Workspace
- arxiv url: http://arxiv.org/abs/2301.07947v1
- Date: Thu, 19 Jan 2023 08:47:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-20 15:26:31.662678
- Title: Point Cloud Data Simulation and Modelling with Aize Workspace
- Title(参考訳): aize workspaceを用いたポイントクラウドデータシミュレーションとモデリング
- Authors: Boris Mocialov, Eirik Eythorsson, Reza Parseh, Hoang Tran, Vegard
Flovik
- Abstract要約: この研究は、デジタル双生児でよく使われるデータモデルに注目し、シミュレーションデータを用いて訓練された表面再構成とセマンティックセグメンテーションモデルから予備的な結果を示す。
この研究は、デジタルツイン内のデータコンテキスト化における将来の取り組みの土台となることが期待されている。
- 参考スコア(独自算出の注目度): 0.03818040429210837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work takes a look at data models often used in digital twins and
presents preliminary results specifically from surface reconstruction and
semantic segmentation models trained using simulated data. This work is
expected to serve as a ground work for future endeavours in data
contextualisation inside a digital twin.
- Abstract(参考訳): この研究は、デジタルツインでよく使われるデータモデルに注目し、シミュレーションデータを用いてトレーニングされた表面再構成とセマンティックセグメンテーションモデルから予備的な結果を示す。
この研究は、デジタルツイン内のデータコンテキスト化における将来の取り組みの基盤となることが期待されている。
関連論文リスト
- DataDream: Few-shot Guided Dataset Generation [90.09164461462365]
実データ分布をより忠実に表現する分類データセットを合成するためのフレームワークを提案する。
DataDream fine-tunes LoRA weights for the image generation model on the few real image before generated the training data using the adapt model。
次に、合成データを用いてCLIPのLoRA重みを微調整し、様々なデータセットに対する以前のアプローチよりも下流画像の分類を改善する。
論文 参考訳(メタデータ) (2024-07-15T17:10:31Z) - Edge-based Parametric Digital Twins for Intelligent Building Indoor
Climate Modeling [0.8460034567194062]
構築された環境におけるデジタルトランスフォーメーションは、構築操作を最適化するデータ駆動モデルを開発するために膨大なデータを生成する。
本研究では, エッジコンピューティング, デジタルツイン, 深層学習を活用し, 建物内の気候の理解を深める統合ソリューションを提案する。
論文 参考訳(メタデータ) (2024-03-07T08:45:31Z) - Modified CycleGAN for the synthesization of samples for wheat head
segmentation [0.09999629695552192]
注釈付きデータセットがない場合は、モデル開発に合成データを使用することができる。
そこで我々は,小麦頭部分割のための現実的な注釈付き合成データセットを開発した。
その結果、Diceのスコアは内部データセットで83.4%、外部のGlobal Wheat Head Detectionデータセットで83.6%に達した。
論文 参考訳(メタデータ) (2024-02-23T06:42:58Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - Supervised Homography Learning with Realistic Dataset Generation [60.934401870005026]
生成フェーズとトレーニングフェーズの2つのフェーズからなる反復的なフレームワークを提案する。
生成段階では、ラベルのない画像対が与えられた場合、事前に推定された支配的な平面マスクとペアのホモグラフィを利用する。
トレーニングフェーズでは、生成されたデータを使用して、教師付きホモグラフィネットワークをトレーニングする。
論文 参考訳(メタデータ) (2023-07-28T07:03:18Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial
Application Case on Autonomous Disassembly [55.41644538483948]
我々は,点クラウドデータにsim2realTransfer Learningを用いた産業アプリケーションケースを提案する。
合成ポイントクラウドデータの生成と処理方法に関する洞察を提供する。
この問題に対処するために、パッチベースの新しいアテンションネットワークも提案されている。
論文 参考訳(メタデータ) (2023-01-12T14:00:37Z) - Enhancing Spatiotemporal Prediction Model using Modular Design and
Beyond [2.323220706791067]
時間と空間の両方でシーケンスを予測することは困難である。
主流の方法は、同時に時間構造と空間構造をモデル化することである。
配列モデルを空間エンコーダデコーダと予測器の2つのモジュールに組み込むモジュール設計を提案する。
論文 参考訳(メタデータ) (2022-10-04T10:09:35Z) - Statistical Deep Learning for Spatial and Spatio-Temporal Data [0.0]
本稿では,空間的・時間的データをモデル化するための統計的・機械学習的な視点について概観する。
次に、最近、潜在プロセス、データ、パラメータ仕様のために開発された様々なハイブリッドモデルに焦点を当てます。
これらのハイブリッドモデルは、モデリングパラダイムの強みを活用するために、モデリングアイデアとディープニューラルネットワークモデルを統合する。
論文 参考訳(メタデータ) (2022-06-05T16:49:10Z) - Task2Sim : Towards Effective Pre-training and Transfer from Synthetic
Data [74.66568380558172]
本稿では,グラフィックスシミュレータから下流タスクへの合成データに基づく事前学習モデルの転送可能性について検討する。
本稿では、最適なシミュレーションパラメータに対する下流タスク表現を統一したモデルマッピングであるTask2Simを紹介する。
このマッピングはトレーニングによって学習し、"見える"タスクのセットで最適なパラメータのセットを見つける。
トレーニングが完了すると、ワンショットで新しい"見えない"タスクの最適なシミュレーションパラメータを予測するために使用することができる。
論文 参考訳(メタデータ) (2021-11-30T19:25:27Z) - From Physics-Based Models to Predictive Digital Twins via Interpretable
Machine Learning [0.0]
この研究は、物理モデルライブラリーからデータ駆動型デジタルツインを作成する方法論を開発する。
デジタルツインは、解釈可能な機械学習を使用して更新される。
このアプローチは、12フィートの翼幅無人航空機のための構造的デジタルツインの開発を通じて実証される。
論文 参考訳(メタデータ) (2020-04-23T17:55:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。