Rapid generation and number-resolved detection of spinor Rubidium
Bose-Einstein condensates
- URL: http://arxiv.org/abs/2301.08172v1
- Date: Thu, 19 Jan 2023 17:04:12 GMT
- Title: Rapid generation and number-resolved detection of spinor Rubidium
Bose-Einstein condensates
- Authors: Cebrail P\"ur, Mareike Hetzel, Martin Quensen, Andreas H\"uper, Jiao
Geng, Jens Kruse, Wolfgang Ertmer, Carsten Klempt
- Abstract summary: We present a high-flux source of $87$Rb Bose-Einstein condensates combined with a number-resolving detection.
We create Bose-Einstein condensates of $2times105$ atoms with no discernible thermal fraction within $3.3$ s using a hybrid evaporation approach in a magnetic/optical trap.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High data acquisition rates and low-noise detection of ultracold neutral
atoms present important challenges for the state tomography and interferometric
application of entangled quantum states in Bose-Einstein condensates. In this
article, we present a high-flux source of $^{87}$Rb Bose-Einstein condensates
combined with a number-resolving detection. We create Bose-Einstein condensates
of $2\times10^5$ atoms with no discernible thermal fraction within $3.3$ s
using a hybrid evaporation approach in a magnetic/optical trap. For the
high-fidelity tomography of many-body quantum states in the spin degree of
freedom [arXiv:2207.01270], it is desirable to select a single mode for a
number-resolving detection. We demonstrate the low-noise selection of
subsamples of up to $16$ atoms and their subsequent detection with a counting
noise below $0.2$ atoms. The presented techniques offer an exciting path
towards the creation and analysis of mesoscopic quantum states with
unprecedented fidelities, and their exploitation for fundamental and
metrological applications.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Resolved-sideband cooling of a single $^9$Be$^+$ ion in a Penning trap [0.0]
Key ingredient is ground-state cooling of the particle's motion through resolved-sideband laser cooling.
We demonstrate resolved-sideband laser cooling of the axial motion of a single $9$Be$+$ ion in a cryogenic 5 Tesla Penning trap system.
arXiv Detail & Related papers (2023-10-27T16:50:14Z) - Repetitive readout and real-time control of nuclear spin qubits in
$^{171}$Yb atoms [0.0]
We demonstrate high fidelity repetitive projective measurements of nuclear spin qubits in an array of atoms.
The state-averaged readout survival of 0.98(1) is limited by off-resonant scattering to dark states.
These capabilities constitute an important step towards adaptive quantum circuits with atom arrays.
arXiv Detail & Related papers (2023-05-04T15:28:45Z) - Quantum enhanced sensing by echoing spin-nematic squeezing in atomic
Bose-Einstein condensate [20.71025384963426]
We present protocols based on echoing spin-nematic squeezing to achieve record high enhancement factors in atomic Bose-Einstein condensate.
Our work highlights the excellent many-body coherence of spin-nematic squeezing and suggests its possible quantum metrological applications in atomic magnetometer, atomic optical clock, and fundamental testing of Lorentz symmetry violation, etc.
arXiv Detail & Related papers (2022-12-18T16:40:28Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Rapid generation of all-optical $^{39}$K Bose-Einstein condensates using
a low-field Feshbach resonance [58.720142291102135]
We investigate the production of all-optical $39$K Bose-Einstein condensates with different scattering lengths using a Feshbach resonance near $33$ G.
We are able to produce fully condensed ensembles with $5.8times104$ atoms within $850$ ms evaporation time at a scattering length of $232.
Based on our findings we describe routes towards high-flux sources of ultra-cold potassium for inertial sensing.
arXiv Detail & Related papers (2022-01-12T16:39:32Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Sub-ms, nondestructive, time-resolved quantum-state readout of a single,
trapped neutral atom [0.0]
We achieve fast, nondestructive quantum-state readout via fluorescence detection of a single $87$Rb atom.
The atom is driven by linearly-polarized readout laser beams, making the scheme insensitive to the distribution of atomic population.
Our results are likely to find application in neutral-atom quantum computing and simulation.
arXiv Detail & Related papers (2020-07-18T13:02:49Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.