論文の概要: Everything is Connected: Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2301.08210v1
- Date: Thu, 19 Jan 2023 18:09:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-20 14:23:40.725315
- Title: Everything is Connected: Graph Neural Networks
- Title(参考訳): すべてが繋がっている:グラフニューラルネットワーク
- Authors: Petar Veli\v{c}kovi\'c
- Abstract要約: この短い調査は、グラフ表現学習の領域において、読者が重要な概念を同化できるようにすることを目的としている。
この短い調査の主な目的は、読者がその領域における重要な概念を同化させ、関連する分野との適切なコンテキストにおける位置グラフ表現学習を可能にすることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In many ways, graphs are the main modality of data we receive from nature.
This is due to the fact that most of the patterns we see, both in natural and
artificial systems, are elegantly representable using the language of graph
structures. Prominent examples include molecules (represented as graphs of
atoms and bonds), social networks and transportation networks. This potential
has already been seen by key scientific and industrial groups, with
already-impacted application areas including traffic forecasting, drug
discovery, social network analysis and recommender systems. Further, some of
the most successful domains of application for machine learning in previous
years -- images, text and speech processing -- can be seen as special cases of
graph representation learning, and consequently there has been significant
exchange of information between these areas. The main aim of this short survey
is to enable the reader to assimilate the key concepts in the area, and
position graph representation learning in a proper context with related fields.
- Abstract(参考訳): 様々な意味で、グラフは自然から受信されるデータの主なモダリティである。
これは、自然系と人工系の両方で見られるパターンのほとんどが、グラフ構造の言語を使ってエレガントに表現できるという事実によるものです。
代表的な例として、分子(原子と結合のグラフとして表される)、ソーシャルネットワーク、輸送ネットワークがある。
このポテンシャルは、交通予測、薬物発見、ソーシャルネットワーク分析、レコメンデーターシステムなど、既に拡大している応用分野を含む、主要な科学および産業グループによってすでに見られている。
さらに、前年で最も成功した機械学習アプリケーション – 画像、テキスト、音声処理 – のいくつかは、グラフ表現学習の特別なケースと見なすことができ、そのため、これらの領域間で重要な情報交換が行われている。
この短い調査の主な目的は、読者がエリア内の重要な概念を統一し、関連する分野の適切なコンテキストでグラフ表現学習を配置できるようにすることである。
関連論文リスト
- Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
大規模"事前訓練と迅速な学習"パラダイムは、顕著な適応性を示している。
この調査は、この分野における100以上の関連する研究を分類し、一般的な設計原則と最新の応用を要約する。
論文 参考訳(メタデータ) (2024-08-26T06:36:42Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
基礎モデルがグラフ機械学習研究者を一般化し、適応させる能力は、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
グラフニューラルネットワークは、従来のニューラルネットワークをグラフ構造化データに一般化する。
グラフ関連学習におけるユークリッドモデルの性能は、ユークリッド幾何学の表現能力によって依然として制限されている。
近年,木のような構造を持つグラフデータ処理や,ゆるい分布の処理において,双曲空間が人気が高まっている。
論文 参考訳(メタデータ) (2022-02-28T15:08:48Z) - Graph Neural Networks: Methods, Applications, and Opportunities [1.2183405753834562]
本稿では,各学習環境におけるグラフニューラルネットワーク(GNN)の包括的調査について報告する。
各学習課題に対するアプローチは、理論的および経験的視点の両方から分析される。
さまざまなアプリケーションやベンチマークデータセットも提供されており、GNNの一般適用性に疑問が残るオープンな課題もある。
論文 参考訳(メタデータ) (2021-08-24T13:46:19Z) - Graph Learning: A Survey [38.245120261668816]
本稿では,グラフ学習の現状について概観する。
グラフ信号処理,行列分解,ランダムウォーク,ディープラーニングなど,既存のグラフ学習手法の4つのカテゴリに特に注目されている。
テキスト,画像,科学,知識グラフ,最適化といった分野におけるグラフ学習アプリケーションについて検討する。
論文 参考訳(メタデータ) (2021-05-03T09:06:01Z) - SpikE: spike-based embeddings for multi-relational graph data [0.0]
スパイクニューラルネットワークは、感覚処理から生じるタスクに主に適用されます。
業界や研究に幅広く適用されている豊富なデータ表現は、いわゆるナレッジグラフです。
本稿では,グラフ中のノードをニューロン集団の単一スパイク時間で表すスパイクベースのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-27T18:00:12Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Deep Learning for Learning Graph Representations [58.649784596090385]
グラフデータのマイニングはコンピュータ科学においてポピュラーな研究トピックとなっている。
ネットワークデータの膨大な量は、効率的な分析に大きな課題をもたらしている。
これはグラフ表現の出現を動機付け、グラフを低次元ベクトル空間にマッピングする。
論文 参考訳(メタデータ) (2020-01-02T02:13:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。