DTCLMapper: Dual Temporal Consistent Learning for Vectorized HD Map Construction
- URL: http://arxiv.org/abs/2405.05518v2
- Date: Sun, 25 Aug 2024 11:27:22 GMT
- Title: DTCLMapper: Dual Temporal Consistent Learning for Vectorized HD Map Construction
- Authors: Siyu Li, Jiacheng Lin, Hao Shi, Jiaming Zhang, Song Wang, You Yao, Zhiyong Li, Kailun Yang,
- Abstract summary: This paper focuses on temporal instance consistency and temporal map consistency learning.
DTCLMapper is a dual-stream temporal consistency learning module that combines instance embedding with geometry maps.
Experiments on well-recognized benchmarks indicate that the proposed DTCLMapper achieves state-of-the-art performance in vectorized mapping tasks.
- Score: 20.6143278960295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal information plays a pivotal role in Bird's-Eye-View (BEV) driving scene understanding, which can alleviate the visual information sparsity. However, the indiscriminate temporal fusion method will cause the barrier of feature redundancy when constructing vectorized High-Definition (HD) maps. In this paper, we revisit the temporal fusion of vectorized HD maps, focusing on temporal instance consistency and temporal map consistency learning. To improve the representation of instances in single-frame maps, we introduce a novel method, DTCLMapper. This approach uses a dual-stream temporal consistency learning module that combines instance embedding with geometry maps. In the instance embedding component, our approach integrates temporal Instance Consistency Learning (ICL), ensuring consistency from vector points and instance features aggregated from points. A vectorized points pre-selection module is employed to enhance the regression efficiency of vector points from each instance. Then aggregated instance features obtained from the vectorized points preselection module are grounded in contrastive learning to realize temporal consistency, where positive and negative samples are selected based on position and semantic information. The geometry mapping component introduces Map Consistency Learning (MCL) designed with self-supervised learning. The MCL enhances the generalization capability of our consistent learning approach by concentrating on the global location and distribution constraints of the instances. Extensive experiments on well-recognized benchmarks indicate that the proposed DTCLMapper achieves state-of-the-art performance in vectorized mapping tasks, reaching 61.9% and 65.1% mAP scores on the nuScenes and Argoverse datasets, respectively. The source code is available at https://github.com/lynn-yu/DTCLMapper.
Related papers
- MGMapNet: Multi-Granularity Representation Learning for End-to-End Vectorized HD Map Construction [75.93907511203317]
We propose MGMapNet (Multi-Granularity Map Network) to model map element with a multi-granularity representation.
The proposed MGMapNet achieves state-of-the-art performance, surpassing MapTRv2 by 5.3 mAP on nuScenes and 4.4 mAP on Argoverse2 respectively.
arXiv Detail & Related papers (2024-10-10T09:05:23Z) - STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking [13.269416985959404]
Multiple object tracking (MOT) in Unmanned Aerial Vehicle (UAV) videos is important for diverse applications in computer vision.
We propose a novel Spatio-Temporal Cohesion Multiple Object Tracking framework (STCMOT)
We use historical embedding features to model the representation of ReID and detection features in a sequential order.
Our framework sets a new state-of-the-art performance in MOTA and IDF1 metrics.
arXiv Detail & Related papers (2024-09-17T14:34:18Z) - GenMapping: Unleashing the Potential of Inverse Perspective Mapping for Robust Online HD Map Construction [20.1127163541618]
We have designed a universal map generation framework, GenMapping.
The framework is established with a triadic synergy architecture, including principal and dual auxiliary branches.
A thorough array of experimental results shows that the proposed model surpasses current state-of-the-art methods in both semantic mapping and vectorized mapping, while also maintaining a rapid inference speed.
arXiv Detail & Related papers (2024-09-13T10:15:28Z) - TASeg: Temporal Aggregation Network for LiDAR Semantic Segmentation [80.13343299606146]
We propose a Temporal LiDAR Aggregation and Distillation (TLAD) algorithm, which leverages historical priors to assign different aggregation steps for different classes.
To make full use of temporal images, we design a Temporal Image Aggregation and Fusion (TIAF) module, which can greatly expand the camera FOV.
We also develop a Static-Moving Switch Augmentation (SMSA) algorithm, which utilizes sufficient temporal information to enable objects to switch their motion states freely.
arXiv Detail & Related papers (2024-07-13T03:00:16Z) - Semantics Meets Temporal Correspondence: Self-supervised Object-centric Learning in Videos [63.94040814459116]
Self-supervised methods have shown remarkable progress in learning high-level semantics and low-level temporal correspondence.
We propose a novel semantic-aware masked slot attention on top of the fused semantic features and correspondence maps.
We adopt semantic- and instance-level temporal consistency as self-supervision to encourage temporally coherent object-centric representations.
arXiv Detail & Related papers (2023-08-19T09:12:13Z) - EgoVM: Achieving Precise Ego-Localization using Lightweight Vectorized
Maps [9.450650025266379]
We present EgoVM, an end-to-end localization network that achieves comparable localization accuracy to prior state-of-the-art methods.
We employ a set of learnable semantic embeddings to encode the semantic types of map elements and supervise them with semantic segmentation.
We adopt a robust histogram-based pose solver to estimate the optimal pose by searching exhaustively over candidate poses.
arXiv Detail & Related papers (2023-07-18T06:07:25Z) - Asynchronously Trained Distributed Topographic Maps [0.0]
We present an algorithm that uses $N$ autonomous units to generate a feature map by distributed training.
Unit autonomy is achieved by sparse interaction in time & space through the combination of a distributed search, and a cascade-driven weight updating scheme.
arXiv Detail & Related papers (2023-01-20T01:15:56Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment function (IFA) is inspired by the rapidly expanding topic of implicit neural representations.
We show that IFA implicitly aligns the feature maps at different levels and is capable of producing segmentation maps in arbitrary resolutions.
Our method can be combined with improvement on various architectures, and it achieves state-of-the-art accuracy trade-off on common benchmarks.
arXiv Detail & Related papers (2022-06-17T09:40:14Z) - Sparse Instance Activation for Real-Time Instance Segmentation [72.23597664935684]
We propose a conceptually novel, efficient, and fully convolutional framework for real-time instance segmentation.
SparseInst has extremely fast inference speed and achieves 40 FPS and 37.9 AP on the COCO benchmark.
arXiv Detail & Related papers (2022-03-24T03:15:39Z) - Temporal Contrastive Graph Learning for Video Action Recognition and
Retrieval [83.56444443849679]
This work takes advantage of the temporal dependencies within videos and proposes a novel self-supervised method named Temporal Contrastive Graph Learning (TCGL)
Our TCGL roots in a hybrid graph contrastive learning strategy to jointly regard the inter-snippet and intra-snippet temporal dependencies as self-supervision signals for temporal representation learning.
Experimental results demonstrate the superiority of our TCGL over the state-of-the-art methods on large-scale action recognition and video retrieval benchmarks.
arXiv Detail & Related papers (2021-01-04T08:11:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.