論文の概要: An Automated Vulnerability Detection Framework for Smart Contracts
- arxiv url: http://arxiv.org/abs/2301.08824v1
- Date: Fri, 20 Jan 2023 23:16:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 16:14:54.891883
- Title: An Automated Vulnerability Detection Framework for Smart Contracts
- Title(参考訳): スマートコントラクトのための脆弱性自動検出フレームワーク
- Authors: Feng Mi, Chen Zhao, Zhuoyi Wang, Sadaf MD Halim, Xiaodi Li, Zhouxiang
Wu, Latifur Khan and Bhavani Thuraisingham
- Abstract要約: ブロックチェーン上のスマートコントラクトの脆弱性を自動的に検出するフレームワークを提案する。
具体的には、まず、スマートコントラクトのバイトコードから新しい特徴ベクトル生成技術を利用する。
次に、収集したベクトルを新しいメトリック学習ベースディープニューラルネットワーク(DNN)に入力し、検出結果を得る。
- 参考スコア(独自算出の注目度): 18.758795474791427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increase of the adoption of blockchain technology in providing
decentralized solutions to various problems, smart contracts have become more
popular to the point that billions of US Dollars are currently exchanged every
day through such technology. Meanwhile, various vulnerabilities in smart
contracts have been exploited by attackers to steal cryptocurrencies worth
millions of dollars. The automatic detection of smart contract vulnerabilities
therefore is an essential research problem. Existing solutions to this problem
particularly rely on human experts to define features or different rules to
detect vulnerabilities. However, this often causes many vulnerabilities to be
ignored, and they are inefficient in detecting new vulnerabilities. In this
study, to overcome such challenges, we propose a framework to automatically
detect vulnerabilities in smart contracts on the blockchain. More specifically,
first, we utilize novel feature vector generation techniques from bytecode of
smart contract since the source code of smart contracts are rarely available in
public. Next, the collected vectors are fed into our novel metric
learning-based deep neural network(DNN) to get the detection result. We conduct
comprehensive experiments on large-scale benchmarks, and the quantitative
results demonstrate the effectiveness and efficiency of our approach.
- Abstract(参考訳): さまざまな問題に対する分散ソリューションの提供にブロックチェーン技術が採用されることで、スマートコントラクトがより普及し、何十億ドルもの米国ドルが日々このような技術を通じて交換されている。
一方、スマートコントラクトのさまざまな脆弱性は、攻撃者が数百万ドル相当の暗号通貨を盗むために悪用されている。
したがって、スマートコントラクトの脆弱性の自動検出は重要な研究課題である。
この問題に対する既存のソリューションは、特に脆弱性を検出するために機能や異なるルールを定義する人間の専門家に依存している。
しかし、これはしばしば多くの脆弱性を無視し、新しい脆弱性を検出するのに非効率である。
本研究では,ブロックチェーン上のスマートコントラクトの脆弱性を自動的に検出するフレームワークを提案する。
具体的には,スマートコントラクトのソースコードが公開されていないため,スマートコントラクトのバイトコードから新たな特徴ベクトル生成技術を利用する。
次に、収集したベクトルを新しいメトリック学習ベースディープニューラルネットワーク(DNN)に入力し、検出結果を得る。
大規模ベンチマークの総合的な実験を行い、定量的な結果から提案手法の有効性と有効性を示す。
関連論文リスト
- Vulnerability Detection in Ethereum Smart Contracts via Machine Learning: A Qualitative Analysis [0.0]
スマートコントラクトに対する機械学習の脆弱性検出における技術の現状を分析する。
スマートコントラクトにおける脆弱性検出の精度,スコープ,効率を高めるためのベストプラクティスについて議論する。
論文 参考訳(メタデータ) (2024-07-26T10:09:44Z) - Versioned Analysis of Software Quality Indicators and Self-admitted Technical Debt in Ethereum Smart Contracts with Ethstractor [2.052808596154225]
本稿では、バージョン管理されたスマートコントラクトのデータセットを収集する最初のスマートコントラクト収集ツールであるEthstractorを提案する。
収集されたデータセットは、スマートコントラクトの脆弱性の指標として、コードメトリクスの信頼性を評価するために使用される。
論文 参考訳(メタデータ) (2024-07-22T18:27:29Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
本稿では,契約設計によるオンライン学習問題において,利害関係者の経済的利益を整合させる理論的枠組みを提案する。
計画問題に対して、遠目エージェントに対する最適契約を決定するための効率的な動的プログラミングアルゴリズムを設計する。
学習問題に対して,契約の堅牢な設計から探索と搾取のバランスに至るまでの課題を解き放つために,非回帰学習アルゴリズムの汎用設計を導入する。
論文 参考訳(メタデータ) (2024-07-01T16:53:00Z) - Dual-view Aware Smart Contract Vulnerability Detection for Ethereum [5.002702845720439]
本報告では,DVDet というデュアルビュー対応スマートコントラクト脆弱性検出フレームワークを提案する。
このフレームワークは最初、スマートコントラクトのソースコードとバイトコードを重み付きグラフに変換し、フローシーケンスを制御する。
データセットの総合的な実験により,我々の手法は脆弱性の検出において他者よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-06-29T06:47:51Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
2023年だけでも、そのような脆弱性は数十億ドルを超える巨額の損失をもたらした。
スマートコントラクトの脆弱性を検出し、軽減するために、さまざまなツールが開発されている。
本研究では,既存のセキュリティスキャナの有効性と,現在も継続している脆弱性とのギャップについて検討する。
論文 参考訳(メタデータ) (2023-12-27T11:26:26Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
従来のスマートコントラクトの脆弱性検出方法は、専門家の規則に大きく依存している。
最近のディープラーニングアプローチはこの問題を軽減するが、有用な専門家の知識をエンコードすることができない。
ソースコードから専門家パターンを抽出する自動ツールを開発する。
次に、深いグラフの特徴を抽出するために、コードをセマンティックグラフにキャストします。
論文 参考訳(メタデータ) (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。