Transfer Knowledge from Natural Language to Electrocardiography: Can We
Detect Cardiovascular Disease Through Language Models?
- URL: http://arxiv.org/abs/2301.09017v1
- Date: Sat, 21 Jan 2023 21:58:00 GMT
- Title: Transfer Knowledge from Natural Language to Electrocardiography: Can We
Detect Cardiovascular Disease Through Language Models?
- Authors: Jielin Qiu, William Han, Jiacheng Zhu, Mengdi Xu, Michael Rosenberg,
Emerson Liu, Douglas Weber, Ding Zhao
- Abstract summary: We propose an approach for cardiovascular disease diagnosis and automatic ECG diagnosis report generation.
The learned embeddings are evaluated on two downstream tasks: (1) automatic ECG diagnosis report generation, and (2) zero-shot cardiovascular disease detection.
Our approach is able to generate high-quality cardiac diagnosis reports and also achieves competitive zero-shot classification performance even compared with supervised baselines.
- Score: 16.220138060415305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have drawn increasing
attention since the learned embeddings pretrained on large-scale datasets have
shown powerful ability in various downstream applications. However, whether the
learned knowledge by LLMs can be transferred to clinical cardiology remains
unknown. In this work, we aim to bridge this gap by transferring the knowledge
of LLMs to clinical Electrocardiography (ECG). We propose an approach for
cardiovascular disease diagnosis and automatic ECG diagnosis report generation.
We also introduce an additional loss function by Optimal Transport (OT) to
align the distribution between ECG and language embedding. The learned
embeddings are evaluated on two downstream tasks: (1) automatic ECG diagnosis
report generation, and (2) zero-shot cardiovascular disease detection. Our
approach is able to generate high-quality cardiac diagnosis reports and also
achieves competitive zero-shot classification performance even compared with
supervised baselines, which proves the feasibility of transferring knowledge
from LLMs to the cardiac domain.
Related papers
- De-biased Multimodal Electrocardiogram Analysis [20.290531515033518]
Multimodal large language models (MLLMs) are increasingly being applied in the medical field.
Previous studies have attempted to address this by converting ECGs into several text tags.
In this work, we directly feed the embeddings of ECGs into the LLM through a projection layer.
arXiv Detail & Related papers (2024-11-22T08:35:35Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Automated Cardiovascular Record Retrieval by Multimodal Learning between
Electrocardiogram and Clinical Report [28.608260758775316]
We introduce a novel approach to ECG interpretation, leveraging recent breakthroughs in Large Language Models (LLMs) and Vision-Transformer (ViT) models.
We propose an alternative method of automatically identifying the most similar clinical cases based on the input ECG data.
Our findings could serve as a crucial resource for providing diagnostic services in underdeveloped regions.
arXiv Detail & Related papers (2023-04-13T06:32:25Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
We propose a two-level hierarchical deep learning framework with Generative Adversarial Network (GAN) for automatic diagnosis of ECG signals.
The first-level model is composed of a Memory-Augmented Deep auto-Encoder with GAN, which aims to differentiate abnormal signals from normal ECGs for anomaly detection.
The second-level learning aims at robust multi-class classification for different arrhythmias identification.
arXiv Detail & Related papers (2022-10-19T12:29:05Z) - Enhancing Deep Learning-based 3-lead ECG Classification with Heartbeat
Counting and Demographic Data Integration [0.0]
This article introduces two novel techniques to improve the performance of the current deep learning system for 3-lead ECG classification.
Specifically, we propose a multi-task learning scheme in the form of the number of heartbeats regression and an effective mechanism to integrate patient demographic data into the system.
With these two advancements, we got classification performance in terms of F1 scores of 0.9796 and 0.8140 on two large-scale ECG datasets.
arXiv Detail & Related papers (2022-08-15T09:33:36Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
We developed a self-supervised contrastive learning approach, EchoCLR, to catered to echocardiogram videos.
When fine-tuned on small portions of labeled data, EchoCLR pretraining significantly improved classification performance for left ventricular hypertrophy (LVH) and aortic stenosis (AS)
EchoCLR is unique in its ability to learn representations of medical videos and demonstrates that SSL can enable label-efficient disease classification from small, labeled datasets.
arXiv Detail & Related papers (2022-07-23T19:17:26Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
We propose a Cross-modal clinical Graph Transformer (CGT) for ophthalmic report generation (ORG)
CGT injects clinical relation triples into the visual features as prior knowledge to drive the decoding procedure.
Experiments on the large-scale FFA-IR benchmark demonstrate that the proposed CGT is able to outperform previous benchmark methods.
arXiv Detail & Related papers (2022-06-04T13:16:30Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - A Novel Transfer Learning-Based Approach for Screening Pre-existing
Heart Diseases Using Synchronized ECG Signals and Heart Sounds [0.5621251909851629]
Diagnosing pre-existing heart diseases early in life is important to prevent complications such as pulmonary hypertension, heart rhythm problems, blood clots, heart failure and sudden cardiac arrest.
To identify such diseases, phonocardiogram (PCG) and electrocardiogram (ECG) waveforms convey important information.
Here, we evaluate this hypothesis on a subset of the PhysioNet Challenge 2016 dataset which contains simultaneously acquired PCG and ECG recordings.
Our novel Dual-Convolutional Neural Network based approach uses transfer learning to tackle the problem of having limited amounts of simultaneous PCG and ECG data that is publicly available.
arXiv Detail & Related papers (2021-02-02T19:51:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.