論文の概要: StockEmotions: Discover Investor Emotions for Financial Sentiment
Analysis and Multivariate Time Series
- arxiv url: http://arxiv.org/abs/2301.09279v1
- Date: Mon, 23 Jan 2023 05:32:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 14:12:08.931124
- Title: StockEmotions: Discover Investor Emotions for Financial Sentiment
Analysis and Multivariate Time Series
- Title(参考訳): stockemotions:金融感情分析と多変量時系列のための投資家感情発見
- Authors: Jean Lee, Hoyoul Luis Youn, Josiah Poon, Soyeon Caren Han
- Abstract要約: 本稿では、株式市場における感情を検出するための新しいデータセットであるStockEmotionsを紹介する。
これは金融ソーシャルメディアプラットフォームであるStockTwitsから集めた1万件の英語コメントで構成されている。
既存の財務感情データセットとは異なり、StockEmotionsは投資家の感情クラス、きめ細かい感情、絵文字、時系列データなどの細かい特徴を提示する。
- 参考スコア(独自算出の注目度): 5.892675412951627
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: There has been growing interest in applying NLP techniques in the financial
domain, however, resources are extremely limited. This paper introduces
StockEmotions, a new dataset for detecting emotions in the stock market that
consists of 10,000 English comments collected from StockTwits, a financial
social media platform. Inspired by behavioral finance, it proposes 12
fine-grained emotion classes that span the roller coaster of investor emotion.
Unlike existing financial sentiment datasets, StockEmotions presents granular
features such as investor sentiment classes, fine-grained emotions, emojis, and
time series data. To demonstrate the usability of the dataset, we perform a
dataset analysis and conduct experimental downstream tasks. For financial
sentiment/emotion classification tasks, DistilBERT outperforms other baselines,
and for multivariate time series forecasting, a Temporal Attention LSTM model
combining price index, text, and emotion features achieves the best performance
than using a single feature.
- Abstract(参考訳): 金融分野でのNLP技術の適用に対する関心は高まりつつあるが、資源は極めて限られている。
本稿では、金融ソーシャルメディアプラットフォームであるStockTwitsから収集された1万の英語コメントからなる、市場における感情を検出するための新しいデータセットであるStockEmotionsを紹介する。
行動金融にヒントを得て、投資家の感情のジェットコースターにまたがる12のきめ細かい感情クラスを提案する。
既存の財務感情データセットとは異なり、StockEmotionsは投資家の感情クラス、きめ細かい感情、絵文字、時系列データなどの細かい特徴を提示する。
データセットのユーザビリティを示すために,データセット分析を行い,実験的なダウンストリームタスクを実行する。
金銭的感情・感情分類タスクでは、DistilBERTは他のベースラインよりも優れており、多変量時系列予測では、価格指数、テキスト、感情特徴を組み合わせた時間的注意LSTMモデルが、1つの特徴よりも最高のパフォーマンスを達成する。
関連論文リスト
- MEMO-Bench: A Multiple Benchmark for Text-to-Image and Multimodal Large Language Models on Human Emotion Analysis [53.012111671763776]
そこで本研究では、7,145枚の肖像画からなる総合的なベンチマークであるMEMO-Benchを紹介した。
以上の結果から,既存のT2Iモデルは負のモデルよりも肯定的な感情を生成するのに効果的であることが示唆された。
MLLMは人間の感情の識別と認識に一定の効果を示すが、人間のレベルの正確さには欠ける。
論文 参考訳(メタデータ) (2024-11-18T02:09:48Z) - AI in Investment Analysis: LLMs for Equity Stock Ratings [0.2916558661202724]
本稿では,Large Language Models (LLMs) のマルチ水平ストックレーティングへの適用について検討する。
本研究は、LLMを活用して株価評価の精度と一貫性を向上させることで、これらの課題に対処する。
提案手法は,フォワードリターンで評価した場合,従来の株価評価手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-30T15:06:57Z) - EmoLLM: Multimodal Emotional Understanding Meets Large Language Models [61.179731667080326]
マルチモーダル・大規模言語モデル(MLLM)は、目的とするマルチモーダル認識タスクにおいて顕著な性能を達成している。
しかし、主観的、感情的にニュアンスのあるマルチモーダルコンテンツを解釈する能力はほとんど解明されていない。
EmoLLMは、マルチモーダルな感情理解のための新しいモデルであり、2つのコア技術が組み込まれている。
論文 参考訳(メタデータ) (2024-06-24T08:33:02Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - MDGNN: Multi-Relational Dynamic Graph Neural Network for Comprehensive
and Dynamic Stock Investment Prediction [22.430266982219496]
マルチリレーショナルな動的グラフニューラルネットワーク(MDGNN)フレームワークを提案する。
提案するMDGNNフレームワークは,SOTA(state-of-the-art-the-art)ストック投資手法と比較して,公開データセットにおける最高のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-01-19T02:51:29Z) - Language Models (Mostly) Do Not Consider Emotion Triggers When Predicting Emotion [87.18073195745914]
人間の感情が感情の予測において有意であると考えられる特徴とどのように相関するかを検討する。
EmoTriggerを用いて、感情のトリガーを識別する大規模言語モデルの能力を評価する。
分析の結果、感情のトリガーは感情予測モデルにとって健全な特徴ではなく、様々な特徴と感情検出のタスクの間に複雑な相互作用があることが判明した。
論文 参考訳(メタデータ) (2023-11-16T06:20:13Z) - EmTract: Extracting Emotions from Social Media [0.0]
本研究では,財務状況に適したソーシャルメディアテキストから感情を抽出するオープンソースツール(EmTract)を開発した。
我々は、感情と市場ダイナミクスが密接に関連していることを示し、金融市場における感情の役割を研究するためのツールを提供する。
論文 参考訳(メタデータ) (2021-12-07T18:01:35Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
マルチモーダル感情認識(MER)のいくつかの重要な側面について論じる。
まず、広く使われている感情表現モデルと感情モダリティの簡単な紹介から始める。
次に、既存の感情アノテーション戦略とそれに対応する計算タスクを要約する。
最後に,実世界のアプリケーションについて概説し,今後の方向性について論じる。
論文 参考訳(メタデータ) (2021-08-18T21:55:20Z) - Graph-Based Learning for Stock Movement Prediction with Textual and
Relational Data [0.0]
ストックフォアキャスティングのためのマルチグラフリカレントネットワーク(MGRN)という新しいストックムーブメント予測フレームワークを提案する。
このアーキテクチャは、財務ニュースからのテキストの感情と、他の財務データから抽出された複数の関係情報を組み合わせることができる。
精度テストとSTOXX Europe 600指数の株価のトレーディングシミュレーションを通じて、我々のモデルが他のベンチマークよりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-07-22T21:57:18Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
本稿では、上記の問題に対処するため、感情を埋め込んだモダリティ変換可能なモデルを提案する。
我々のモデルは感情カテゴリーのほとんどで最先端のパフォーマンスを達成する。
私たちのモデルは、目に見えない感情に対するゼロショットと少数ショットのシナリオにおいて、既存のベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-09-21T06:10:39Z) - Stock Index Prediction with Multi-task Learning and Word Polarity Over
Time [2.240287188224631]
感情抽出器と要約器からなる2段階システムを提案する。
我々は、ニュースの価値を予測するマルチタスク学習のBERTを採用し、極性-極性(Polarity-Over-Time)という指標を提案して、単語の極性(Polarity)を抽出する。
Weekly-Monday予測フレームワークと10年間のReuters金融ニュースデータセットという新しいデータセットも提案されている。
論文 参考訳(メタデータ) (2020-08-17T20:22:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。