論文の概要: FinTMMBench: Benchmarking Temporal-Aware Multi-Modal RAG in Finance
- arxiv url: http://arxiv.org/abs/2503.05185v1
- Date: Fri, 07 Mar 2025 07:13:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:20:40.136147
- Title: FinTMMBench: Benchmarking Temporal-Aware Multi-Modal RAG in Finance
- Title(参考訳): FinTMMBench:財務における時間対応マルチモーダルRAGのベンチマーク
- Authors: Fengbin Zhu, Junfeng Li, Liangming Pan, Wenjie Wang, Fuli Feng, Chao Wang, Huanbo Luan, Tat-Seng Chua,
- Abstract要約: FinTMMBenchは、ファイナンスにおける時間対応マルチモーダル検索・拡張生成システムを評価するための、最初の包括的なベンチマークである。
NASDAQ 100社の異種データから構築されたFinTMMBenchには,3つの大きなメリットがある。
- 参考スコア(独自算出の注目度): 79.78247299859656
- License:
- Abstract: Finance decision-making often relies on in-depth data analysis across various data sources, including financial tables, news articles, stock prices, etc. In this work, we introduce FinTMMBench, the first comprehensive benchmark for evaluating temporal-aware multi-modal Retrieval-Augmented Generation (RAG) systems in finance. Built from heterologous data of NASDAQ 100 companies, FinTMMBench offers three significant advantages. 1) Multi-modal Corpus: It encompasses a hybrid of financial tables, news articles, daily stock prices, and visual technical charts as the corpus. 2) Temporal-aware Questions: Each question requires the retrieval and interpretation of its relevant data over a specific time period, including daily, weekly, monthly, quarterly, and annual periods. 3) Diverse Financial Analysis Tasks: The questions involve 10 different tasks, including information extraction, trend analysis, sentiment analysis and event detection, etc. We further propose a novel TMMHybridRAG method, which first leverages LLMs to convert data from other modalities (e.g., tabular, visual and time-series data) into textual format and then incorporates temporal information in each node when constructing graphs and dense indexes. Its effectiveness has been validated in extensive experiments, but notable gaps remain, highlighting the challenges presented by our FinTMMBench.
- Abstract(参考訳): 金融決定は、金融表、ニュース記事、株価など、さまざまなデータソースの詳細なデータ分析に依存することが多い。
本研究では,ファイナンスにおける時間認識型マルチモーダル検索・拡張生成(RAG)システムを評価するための,最初の総合ベンチマークであるFinTMMBenchを紹介する。
NASDAQ 100社の異種データから構築されたFinTMMBenchには,3つの大きなメリットがある。
1)マルチモーダルコーパス(Multi-modal Corpus):財務表、ニュース記事、毎日の株価、そしてコーパスとしての視覚技術チャートのハイブリッドを包含する。
2) 時間認識質問:各質問は,日,週,月,四半期,年次を含む特定の期間にわたって,関連データの検索と解釈を必要とする。
3)各種財務分析課題:情報抽出・傾向分析・感情分析・事象検出など10種類の課題を問う。
さらに,LLMを用いた新しいTMMHybridRAG法を提案し,グラフや高密度なインデックスを構築する際に,他のモダリティ(表,視覚,時系列データなど)からのデータをテキスト形式に変換し,時間情報を各ノードに組み込む。
その効果は広範な実験で検証されているが、FinTMMBenchがもたらす課題を浮き彫りにした顕著なギャップが残っている。
関連論文リスト
- AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBenは、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークである。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
論文 参考訳(メタデータ) (2024-02-20T02:16:16Z) - FinVis-GPT: A Multimodal Large Language Model for Financial Chart
Analysis [15.20897845057384]
FinVis-GPTは、財務チャート分析に特化して設計された、新しいマルチモーダル大言語モデル(LLM)である。
提案されたFinVis-GPTは、金融分野におけるマルチモーダル LLM の利用の先駆的な取り組みである。
論文 参考訳(メタデータ) (2023-07-31T07:44:15Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z) - StockEmotions: Discover Investor Emotions for Financial Sentiment
Analysis and Multivariate Time Series [5.892675412951627]
本稿では、株式市場における感情を検出するための新しいデータセットであるStockEmotionsを紹介する。
これは金融ソーシャルメディアプラットフォームであるStockTwitsから集めた1万件の英語コメントで構成されている。
既存の財務感情データセットとは異なり、StockEmotionsは投資家の感情クラス、きめ細かい感情、絵文字、時系列データなどの細かい特徴を提示する。
論文 参考訳(メタデータ) (2023-01-23T05:32:42Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
我々は、大量の財務文書の分析を自動化することを目的として、財務データに関する深い質問に答えることに重点を置いている。
我々は,金融専門家が作成した財務報告に対して質問回答のペアを用いた,新たな大規模データセットFinQAを提案する。
その結果、人気があり、大規模で、事前訓練されたモデルは、金融知識を得るための専門的な人間には程遠いことが示される。
論文 参考訳(メタデータ) (2021-09-01T00:08:14Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
金融指標、株価、為替レートなどの複数の時系列は、市場が潜んでいる状態に依存しているため、強く結びついている。
金融時系列間の関係を多出力ガウスプロセスでモデル化することで学習することに注力する。
論文 参考訳(メタデータ) (2020-02-11T19:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。