論文の概要: AI in Investment Analysis: LLMs for Equity Stock Ratings
- arxiv url: http://arxiv.org/abs/2411.00856v1
- Date: Wed, 30 Oct 2024 15:06:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:49:23.796208
- Title: AI in Investment Analysis: LLMs for Equity Stock Ratings
- Title(参考訳): AI in Investment Analysis: LLMs for Equity Stock Ratings
- Authors: Kassiani Papasotiriou, Srijan Sood, Shayleen Reynolds, Tucker Balch,
- Abstract要約: 本稿では,Large Language Models (LLMs) のマルチ水平ストックレーティングへの適用について検討する。
本研究は、LLMを活用して株価評価の精度と一貫性を向上させることで、これらの課題に対処する。
提案手法は,フォワードリターンで評価した場合,従来の株価評価手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.2916558661202724
- License:
- Abstract: Investment Analysis is a cornerstone of the Financial Services industry. The rapid integration of advanced machine learning techniques, particularly Large Language Models (LLMs), offers opportunities to enhance the equity rating process. This paper explores the application of LLMs to generate multi-horizon stock ratings by ingesting diverse datasets. Traditional stock rating methods rely heavily on the expertise of financial analysts, and face several challenges such as data overload, inconsistencies in filings, and delayed reactions to market events. Our study addresses these issues by leveraging LLMs to improve the accuracy and consistency of stock ratings. Additionally, we assess the efficacy of using different data modalities with LLMs for the financial domain. We utilize varied datasets comprising fundamental financial, market, and news data from January 2022 to June 2024, along with GPT-4-32k (v0613) (with a training cutoff in Sep. 2021 to prevent information leakage). Our results show that our benchmark method outperforms traditional stock rating methods when assessed by forward returns, specially when incorporating financial fundamentals. While integrating news data improves short-term performance, substituting detailed news summaries with sentiment scores reduces token use without loss of performance. In many cases, omitting news data entirely enhances performance by reducing bias. Our research shows that LLMs can be leveraged to effectively utilize large amounts of multimodal financial data, as showcased by their effectiveness at the stock rating prediction task. Our work provides a reproducible and efficient framework for generating accurate stock ratings, serving as a cost-effective alternative to traditional methods. Future work will extend to longer timeframes, incorporate diverse data, and utilize newer models for enhanced insights.
- Abstract(参考訳): 投資分析は金融サービス産業の基盤となっている。
高度な機械学習技術、特にLarge Language Models(LLMs)の迅速な統合は、エクイティレーティングプロセスを強化する機会を提供する。
本稿では,多様なデータセットを取り込み,マルチホライゾン・ストックレーティングを生成するためのLCMの応用について検討する。
従来の株価評価手法は金融アナリストの専門知識に大きく依存しており、データの過負荷、申請の不整合、市場の出来事に対する遅延反応など、いくつかの課題に直面している。
本研究は、LLMを活用して株価評価の精度と一貫性を向上させることで、これらの課題に対処する。
さらに、金融分野において、LLMを用いて異なるデータモダリティを使用することの有効性を評価する。
我々は2022年1月から2024年6月までの基本的な財務、市場、ニュースデータ、およびGPT-4-32k (v0613) を含む様々なデータセットを利用して情報漏洩を防止する。
提案手法は, フォワードリターンの評価において, 特に財務基盤を取り入れた場合, 従来の株価評価手法よりも優れていることを示す。
ニュースデータの統合は短期的なパフォーマンスを改善する一方で、詳細なニュース要約を感情スコアに置き換えることで、パフォーマンスを損なうことなくトークンの使用を減らすことができる。
多くの場合、ニュースデータを省略することでバイアスを減らして性能が完全に向上する。
本研究により, LLM は, 株価評価予測タスクにおける有効性から, 大量のマルチモーダル財務データを効果的に活用できることが示唆された。
我々の研究は、再現可能で効率的なフレームワークを提供し、正確な株価評価を生成し、従来の方法に代わるコスト効率の良い代替手段として役立ちます。
今後の作業は、より長いタイムフレームに拡張され、多様なデータを取り込み、より新しいモデルを使って洞察を深める。
関連論文リスト
- Dynamic Uncertainty Ranking: Enhancing In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
大規模言語モデル(LLM)は、事前訓練中に多様なドメインから膨大な量の知識を学習することができる。
専門ドメインからの長い尾の知識は、しばしば不足し、表現されていないため、モデルの記憶にはほとんど現れない。
ICLの強化学習に基づく動的不確実性ランキング手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T03:42:17Z) - Trading through Earnings Seasons using Self-Supervised Contrastive Representation Learning [1.6574413179773761]
Contrastive Earnings Transformer (CET) は、Contrastive Predictive Coding (CPC) に根ざした自己教師型学習手法である。
我々の研究は、株価データの複雑さを深く掘り下げ、さまざまなモデルが、時間と異なるセクターで急速に変化する収益データの関連性をどのように扱うかを評価している。
CETのCPCに関する基盤は、財務データ時代においても、一貫した株価予測を促進する、微妙な理解を可能にする。
論文 参考訳(メタデータ) (2024-09-25T22:09:59Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
本稿では、命令ベースの新しい手法と量子化低ランク適応(QLoRA)圧縮を組み合わせることで、LLM(Large Language Models)命令を微調整することで、高度なアプローチを提案する。
近年の市場指標やアナリストの成績等「外部要因」を統合して、リッチで教師付きデータセットを作成する。
この研究は、最先端のAIを微調整された財務データに統合する能力を実証するだけでなく、AI駆動の財務分析ツールを強化するための将来の研究の道を開く。
論文 参考訳(メタデータ) (2024-08-13T04:53:31Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs [65.9625653425636]
大型言語モデル(LLM)は有害な社会的バイアスを示す。
そこで本研究では,ChatGPTを用いて合成学習データを生成する手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T01:28:48Z) - Temporal Data Meets LLM -- Explainable Financial Time Series Forecasting [7.485041391778341]
我々はNASDAQ-100株に重点を置いており、公開アクセス可能な歴史的株価データ、企業のメタデータ、歴史的経済・金融ニュースを活用している。
我々は,Open-LLaMA などの公開 LLM を微調整した上で,説明可能な予測を生成するための命令を理解することができることを示す。
論文 参考訳(メタデータ) (2023-06-19T15:42:02Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。