論文の概要: A Framework for Evaluating the Impact of Food Security Scenarios
- arxiv url: http://arxiv.org/abs/2301.09320v1
- Date: Mon, 23 Jan 2023 08:41:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 13:51:55.671278
- Title: A Framework for Evaluating the Impact of Food Security Scenarios
- Title(参考訳): 食品安全シナリオの影響評価のための枠組み
- Authors: Rachid Belmeskine, Abed Benaichouche
- Abstract要約: このケーススタディは、国連食糧農業機関(FAOSTAT)、世界銀行、米国農務省(USDA)のデータを用いて作成された、独自の時系列食品セキュリティデータベースに基づいている。
提案手法は,食品セキュリティにおけるシナリオの潜在的な影響を予測するために,また,この手法をサポートするために,独自の時系列食品セキュリティデータベースを使用することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes an approach for predicting the impacts of scenarios on
food security and demonstrates its application in a case study. The approach
involves two main steps: (1) scenario definition, in which the end user
specifies the assumptions and impacts of the scenario using a scenario
template, and (2) scenario evaluation, in which a Vector Autoregression (VAR)
model is used in combination with Monte Carlo simulation to generate
predictions for the impacts of the scenario based on the defined assumptions
and impacts. The case study is based on a proprietary time series food security
database created using data from the Food and Agriculture Organization of the
United Nations (FAOSTAT), the World Bank, and the United States Department of
Agriculture (USDA). The database contains a wide range of data on various
indicators of food security, such as production, trade, consumption, prices,
availability, access, and nutritional value. The results show that the proposed
approach can be used to predict the potential impacts of scenarios on food
security and that the proprietary time series food security database can be
used to support this approach. The study provides specific insights on how this
approach can inform decision-making processes related to food security such as
food prices and availability in the case study region.
- Abstract(参考訳): 本研究は,食品の安全性に及ぼすシナリオの影響を予測し,その応用を事例研究で示すアプローチを提案する。
このアプローチには,(1)シナリオ定義,(2)シナリオテンプレートを用いてシナリオの仮定と影響をエンドユーザが指定するシナリオ定義,(2)シナリオ評価,(3)ベクトル自己回帰(VAR)モデルをモンテカルロシミュレーションと組み合わせてシナリオの影響を予測するシナリオ評価,の2つのステップがある。
このケーススタディは、国連食糧農業機関(faostat)、世界銀行、アメリカ合衆国農務省(usda)のデータを用いて作成された、プロプライエタリな時系列食品安全保障データベースに基づいている。
データベースには、生産、貿易、消費、価格、可用性、アクセス、栄養価など、食品の安全に関する様々な指標に関する幅広いデータが含まれている。
その結果,提案手法は,食品セキュリティに対するシナリオの潜在的な影響を予測するために,また,プロプライエタリな時系列食品セキュリティデータベースを用いて,このアプローチをサポートすることができることが示された。
この研究は、このアプローチが、食品価格やケーススタディ地域での可用性などの食品の安全性に関する意思決定プロセスにどのように影響を与えるかについて、具体的な洞察を提供する。
関連論文リスト
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - NourishNet: Proactive Severity State Forecasting of Food Commodity Prices for Global Warning Systems [0.0]
世界的な食品商品の価格変動は、食品市場の破壊の可能性を示す重要なシグナルである。
FAOは以前、食品価格の積極的な予測のための洗練された統計フレームワークを開発した。
本研究は,堅牢な価格セキュリティ指標と最先端のディープラーニング(DL)手法を統合することにより,これらの基盤の上に構築されている。
論文 参考訳(メタデータ) (2024-06-30T13:43:26Z) - From Canteen Food to Daily Meals: Generalizing Food Recognition to More
Practical Scenarios [92.58097090916166]
DailyFood-172とDailyFood-16という2つの新しいベンチマークを、毎日の食事から食のイメージをキュレートする。
これらの2つのデータセットは、よく計算された食品画像領域から日常的な食品画像領域へのアプローチの伝達性を評価するために使用される。
論文 参考訳(メタデータ) (2024-03-12T08:32:23Z) - Forecasting trends in food security with real time data [0.0]
我々は,マリ,ナイジェリア,シリア,イエメンの4カ国で,60日間連続して食料消費の水準を予測する定量的手法を提案する。
この手法は、World Food Programmeのグローバルな飢餓モニタリングシステムから入手可能なデータに基づいて構築されている。
論文 参考訳(メタデータ) (2023-12-01T14:42:37Z) - When is Off-Policy Evaluation (Reward Modeling) Useful in Contextual Bandits? A Data-Centric Perspective [64.73162159837956]
ログ化されたデータセットだけで仮説的ターゲットポリシーの価値を評価することは重要だが、難しい。
データ中心のフレームワークであるDataCOPEを提案する。
医療データセットを用いたログ化された文脈的帯域設定におけるDataCOPEの実証分析により、機械学習と人間の専門家ポリシーの両方を評価する能力が確認された。
論文 参考訳(メタデータ) (2023-11-23T17:13:37Z) - Revolutionizing Global Food Security: Empowering Resilience through
Integrated AI Foundation Models and Data-Driven Solutions [8.017557640367938]
本稿では,食品セキュリティアプリケーションにおけるAIファンデーションモデルの統合について検討する。
本研究は, 収穫型マッピング, 耕作地マッピング, フィールドデライン化, 収穫量予測における利用状況について検討した。
論文 参考訳(メタデータ) (2023-10-31T09:15:35Z) - Assessing Privacy Risks in Language Models: A Case Study on
Summarization Tasks [65.21536453075275]
我々は要約作業に焦点をあて、会員推測(MI)攻撃について調査する。
テキストの類似性や文書修正に対するモデルの抵抗をMI信号として活用する。
我々は、MI攻撃から保護するための要約モデルの訓練と、プライバシとユーティリティの本質的にのトレードオフについて議論する。
論文 参考訳(メタデータ) (2023-10-20T05:44:39Z) - Food Image Classification and Segmentation with Attention-based Multiple
Instance Learning [51.279800092581844]
本稿では,食品画像分類とセマンティックセグメンテーションモデルを訓練するための弱教師付き方法論を提案する。
提案手法は、注意に基づくメカニズムと組み合わせて、複数のインスタンス学習アプローチに基づいている。
提案手法の有効性を検証するため,FoodSeg103データセット内の2つのメタクラスについて実験を行った。
論文 参考訳(メタデータ) (2023-08-22T13:59:47Z) - Simulating Personal Food Consumption Patterns using a Modified Markov
Chain [5.874935571318868]
本稿では,マルコフ連鎖モデルの改良と自己指導型学習を活用することにより,個人用食品消費データパターンをシミュレートする新しい枠組みを提案する。
実験の結果,ランダムシミュレーションやマルコフ連鎖法と比較して有望な性能を示した。
論文 参考訳(メタデータ) (2022-08-13T18:50:23Z) - Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images
and Recipes with Semantic Consistency and Attention Mechanism [70.85894675131624]
画像とレシピを共通の特徴空間に埋め込み、対応する画像とレシピの埋め込みが互いに近接するように学習する。
本稿では,2つのモダリティの埋め込みを正規化するためのセマンティック・一貫性とアテンション・ベース・ネットワーク(SCAN)を提案する。
食品画像や調理レシピの最先端のクロスモーダル検索戦略を,かなりの差で達成できることが示される。
論文 参考訳(メタデータ) (2020-03-09T07:41:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。