Releasing the Parameter Latency of Neural Representation for High-Efficiency Video Compression
- URL: http://arxiv.org/abs/2410.01654v2
- Date: Thu, 3 Oct 2024 12:43:14 GMT
- Title: Releasing the Parameter Latency of Neural Representation for High-Efficiency Video Compression
- Authors: Gai Zhang, Xinfeng Zhang, Lv Tang, Yue Li, Kai Zhang, Li Zhang,
- Abstract summary: implicit neural representation (INR) technique models entire videos as basic units, automatically capturing intra-frame and inter-frame correlations.
In this paper, we show that our method significantly enhances the rate-distortion performance of INR video compression.
- Score: 18.769136361963472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For decades, video compression technology has been a prominent research area. Traditional hybrid video compression framework and end-to-end frameworks continue to explore various intra- and inter-frame reference and prediction strategies based on discrete transforms and deep learning techniques. However, the emerging implicit neural representation (INR) technique models entire videos as basic units, automatically capturing intra-frame and inter-frame correlations and obtaining promising performance. INR uses a compact neural network to store video information in network parameters, effectively eliminating spatial and temporal redundancy in the original video. However, in this paper, our exploration and verification reveal that current INR video compression methods do not fully exploit their potential to preserve information. We investigate the potential of enhancing network parameter storage through parameter reuse. By deepening the network, we designed a feasible INR parameter reuse scheme to further improve compression performance. Extensive experimental results show that our method significantly enhances the rate-distortion performance of INR video compression.
Related papers
- Streaming Neural Images [56.41827271721955]
Implicit Neural Representations (INRs) are a novel paradigm for signal representation that have attracted considerable interest for image compression.
In this work, we explore the critical yet overlooked limiting factors of INRs, such as computational cost, unstable performance, and robustness.
arXiv Detail & Related papers (2024-09-25T17:51:20Z) - NVRC: Neural Video Representation Compression [13.131842990481038]
We propose a novel INR-based video compression framework, Neural Video Representation Compression (NVRC)
NVRC, for the first time, is able to optimize an INR-based video in a fully end-to-end manner.
Our experiments show that NVRC outperforms many conventional and learning-based benchmark entropy.
arXiv Detail & Related papers (2024-09-11T16:57:12Z) - UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Implicit Neural Representation (INR) networks have shown remarkable versatility due to their flexible compression ratios.
We introduce a codebook containing frequency domain information as a prior input to the INR network.
This enhances the representational power of INR and provides distinctive conditioning for different image blocks.
arXiv Detail & Related papers (2024-05-27T05:52:13Z) - NERV++: An Enhanced Implicit Neural Video Representation [11.25130799452367]
We introduce neural representations for videos NeRV++, an enhanced implicit neural video representation.
NeRV++ is more straightforward yet effective enhancement over the original NeRV decoder architecture.
We evaluate our method on UVG, MCL JVC, and Bunny datasets, achieving competitive results for video compression with INRs.
arXiv Detail & Related papers (2024-02-28T13:00:32Z) - DNeRV: Modeling Inherent Dynamics via Difference Neural Representation
for Videos [53.077189668346705]
Difference Representation for Videos (eRV)
We analyze this from the perspective of limitation function fitting and the importance of frame difference.
DNeRV achieves competitive results against the state-of-the-art neural compression approaches.
arXiv Detail & Related papers (2023-04-13T13:53:49Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
We introduce a modality-agnostic neural compression algorithm based on a functional view of data and parameterised as an Implicit Neural Representation (INR)
Bridging the gap between latent coding and sparsity, we obtain compact latent representations non-linearly mapped to a soft gating mechanism.
After obtaining a dataset of such latent representations, we directly optimise the rate/distortion trade-off in a modality-agnostic space using neural compression.
arXiv Detail & Related papers (2023-01-23T15:22:42Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Neural Weight Step Video Compression [0.5772546394254112]
In this work, we suggest a set of experiments for testing the feasibility of compressing video using two architectural paradigms.
We propose a novel technique of encoding frames of a video as low-entropy parameter updates.
To assess the feasibility of the considered approaches, we will test the video compression performance on several high-resolution video datasets.
arXiv Detail & Related papers (2021-12-02T18:53:05Z) - Towards Generative Video Compression [37.759436128930346]
We present a neural video compression method based on generative adversarial networks (GANs) that outperforms previous neural video compression methods and is comparable to HEVC in a user study.
arXiv Detail & Related papers (2021-07-26T08:53:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.