論文の概要: Contracting Skeletal Kinematic Embeddings for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2301.09489v1
- Date: Mon, 23 Jan 2023 15:32:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 13:16:15.905652
- Title: Contracting Skeletal Kinematic Embeddings for Anomaly Detection
- Title(参考訳): 異常検出のための収縮骨格力学埋め込み
- Authors: Alessandro Flaborea, Guido Maria D'Amely di Melendugno, Stefano
D'arrigo, Marco Aurelio Sterpa, Alessio Sampieri, Fabio Galasso
- Abstract要約: 効率的なグラフ畳み込みネットワークにより骨格運動を符号化する新しいモデルであるCOSKADを提案する。
我々は、COSKADの3つの潜在空間設計を解析する: 一般的に付加されるユークリッドと、新しい球面半径と双曲体積である。
3つの変種はいずれも、シャンガイ技術センター、アベニュー、最新のUB正規データセットなど、ビデオベースの技術を含む最先端技術よりも優れている。
- 参考スコア(独自算出の注目度): 58.661899246497896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting the anomaly of human behavior is paramount to timely recognizing
endangering situations, such as street fights or elderly falls. However,
anomaly detection is complex, since anomalous events are rare and because it is
an open set recognition task, i.e., what is anomalous at inference has not been
observed at training. We propose COSKAD, a novel model which encodes skeletal
human motion by an efficient graph convolutional network and learns to COntract
SKeletal kinematic embeddings onto a latent hypersphere of minimum volume for
Anomaly Detection. We propose and analyze three latent space designs for
COSKAD: the commonly-adopted Euclidean, and the new spherical-radial and
hyperbolic volumes. All three variants outperform the state-of-the-art,
including video-based techniques, on the ShangaiTechCampus, the Avenue, and on
the most recent UBnormal dataset, for which we contribute novel skeleton
annotations and the selection of human-related videos. The source code and
dataset will be released upon acceptance.
- Abstract(参考訳): 人間の行動の異常を検出することは、ストリートファイトや高齢者の転倒といった危険な状況を認識するのに最重要である。
しかし、異常検出は複雑であり、異常事象は稀であり、開集合認識タスクであるため、推論における異常とは何かが訓練中に観測されていない。
COSKADは、効率的なグラフ畳み込みネットワークによって骨格の人間の動きを符号化し、異常検出のために最小体積の潜伏超球面にSKinematicの埋め込みを抽出する新しいモデルである。
我々は, COSKAD の3つの潜在空間設計, 一般に付加されるユークリッド空間, 新たな球面半径および双曲体積について提案し, 解析する。
ShangaiTechCampus、The Avenue、および最新のUBnormalデータセットでは、ビデオベースの技術を含む3つのバリエーションが最先端で、新しい骨格のアノテーションや人間関連のビデオの選択に貢献しています。
ソースコードとデータセットは受理時にリリースされる。
関連論文リスト
- Are we certain it's anomalous? [57.729669157989235]
時系列における異常検出は、高度に非線形な時間的相関のため、異常は稀であるため、複雑なタスクである。
本稿では,異常検出(HypAD)におけるハイパボリック不確実性の新しい利用法を提案する。
HypADは自己指導で入力信号を再構築する。
論文 参考訳(メタデータ) (2022-11-16T21:31:39Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [123.8534356845092]
本稿では, 自己監督型マスク型畳み込み変圧器ブロック (SSMCTB) について述べる。
本研究では,従来の自己監督型予測畳み込み阻止ブロック(SSPCAB)を3次元マスク付き畳み込み層で拡張する。
このブロックは,医療画像やサーマルビデオに異常検出を加えることで,幅広いタスクに適用可能であることを示す。
論文 参考訳(メタデータ) (2022-09-25T04:56:10Z) - From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale
Contrastive Learning Approach [49.439021563395976]
グラフデータからの異常検出は、ソーシャルネットワーク、金融、eコマースなど、多くのアプリケーションにおいて重要なデータマイニングタスクである。
マルチスケールcONtrastive lEarning(略してANEMONE)を用いた新しいフレームワーク, graph Anomaly dEtection フレームワークを提案する。
グラフニューラルネットワークをバックボーンとして、複数のグラフスケール(ビュー)から情報をエンコードすることで、グラフ内のノードのより良い表現を学習する。
論文 参考訳(メタデータ) (2022-02-11T09:45:11Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - Anomaly Detection in Video Sequences: A Benchmark and Computational
Model [25.25968958782081]
本稿では,ビデオシーケンスにおける異常検出のベンチマークとして,新しい大規模異常検出(LAD)データベースを提案する。
通常のビデオクリップや異常なビデオクリップを含む2000の動画シーケンスが含まれており、クラッシュ、火災、暴力など14の異常なカテゴリーがある。
ビデオレベルラベル(異常/正常ビデオ、異常タイプ)やフレームレベルラベル(異常/正常ビデオフレーム)を含むアノテーションデータを提供し、異常検出を容易にする。
完全教師付き学習問題として異常検出を解くために,マルチタスク深層ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-16T06:34:38Z) - Anomalous entities detection using a cascade of deep learning models [2.9005223064604078]
本稿では,試験ホールの複雑な状況において異常を検知する新しい手法を提案する。
提案手法は,深層畳み込みニューラルネットワークモデルのカスケードを用いる。
提案手法は異常な物体を検知し,異常な挙動を高精度に保証できることを示す。
論文 参考訳(メタデータ) (2021-03-09T01:23:19Z) - Double-Adversarial Activation Anomaly Detection: Adversarial
Autoencoders are Anomaly Generators [0.0]
異常検出は、固有のクラス不均衡のために機械学習アルゴリズムにとって難しいタスクです。
生成モデルに着想を得て,ニューラルネットワークの隠れ活性化の解析を行い,DA3Dと呼ばれる新しい教師なし異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-01-12T18:07:34Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - Anomaly Awareness [0.0]
本稿では,異常認識と呼ばれる新しい異常検出アルゴリズムを提案する。
アルゴリズムは、コスト関数の修正により異常を認識しながら、通常の事象について学習する。
本手法は粒子物理学の異なる状況やコンピュータビジョンの標準的なタスクでどのように機能するかを示す。
論文 参考訳(メタデータ) (2020-07-20T16:39:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。