論文の概要: Prediction-Powered Inference
- arxiv url: http://arxiv.org/abs/2301.09633v1
- Date: Mon, 23 Jan 2023 18:59:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 12:40:27.900552
- Title: Prediction-Powered Inference
- Title(参考訳): 予測動力推論
- Authors: Anastasios N. Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I.
Jordan, Tijana Zrnic
- Abstract要約: 統計的推論を有効なものにするためのフレームワークとして,予測による推論をx2013$で導入する。
我々のフレームワークは、予測を提供する機械学習アルゴリズムを仮定することなく、証明可能な結論を得る。
- 参考スコア(独自算出の注目度): 75.85969077788283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce prediction-powered inference $\unicode{x2013}$ a framework for
performing valid statistical inference when an experimental data set is
supplemented with predictions from a machine-learning system such as AlphaFold.
Our framework yields provably valid conclusions without making any assumptions
on the machine-learning algorithm that supplies the predictions. Higher
accuracy of the predictions translates to smaller confidence intervals,
permitting more powerful inference. Prediction-powered inference yields simple
algorithms for computing valid confidence intervals for statistical objects
such as means, quantiles, and linear and logistic regression coefficients. We
demonstrate the benefits of prediction-powered inference with data sets from
proteomics, genomics, electronic voting, remote sensing, census analysis, and
ecology.
- Abstract(参考訳): 実験データセットにAlphaFoldのような機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークとして,予測駆動推論$\unicode{x2013}を紹介した。
我々のフレームワークは、予測を提供する機械学習アルゴリズムを仮定することなく、証明可能な結論を得る。
予測の高精度さはより小さな信頼区間に変換され、より強力な推論が可能である。
予測を用いた推論は、手段、量子、線形およびロジスティック回帰係数などの統計対象に対する有効な信頼区間を計算するための単純なアルゴリズムを生成する。
プロテオミクス,ゲノミクス,電子投票,リモートセンシング,国勢調査解析,生態学のデータセットを用いた予測に基づく推論の利点を実証する。
関連論文リスト
- Do We Really Even Need Data? [2.3749120526936465]
研究者は、事前学習されたアルゴリズムの予測を結果変数として利用している。
推測のための標準的なツールは、真で観測されていない結果が予測された値に置き換えられたときに、独立変数と利害関係の関連性を誤って表現することができる。
論文 参考訳(メタデータ) (2024-01-14T23:19:21Z) - PPI++: Efficient Prediction-Powered Inference [31.403415618169433]
PPI++: 小さなラベル付きデータセットと、通常より大きな機械学習予測データセットに基づく推定と推測の方法論を提案する。
これらの手法は、利用可能な予測の品質に自動的に適応し、容易に計算可能な信頼セットを得る。
PPI++は予測駆動推論(PPI)に基づいており、同じ問題設定をターゲットとし、計算効率と統計効率を改善している。
論文 参考訳(メタデータ) (2023-11-02T17:59:04Z) - Conformal prediction for the design problem [72.14982816083297]
機械学習の現実的な展開では、次にテストすべきデータを選択するために予測アルゴリズムを使用します。
このような設定では、トレーニングデータとテストデータの間には、異なるタイプの分散シフトがある。
このような環境で予測の不確実性を定量化する手法を提案する。
論文 参考訳(メタデータ) (2022-02-08T02:59:12Z) - On the Relation between Prediction and Imputation Accuracy under Missing
Covariates [0.0]
近年の研究では、計算のための現代の機械学習アルゴリズムの利用傾向が増している。
近年の研究では、計算のための現代の機械学習アルゴリズムの利用傾向が増している。
論文 参考訳(メタデータ) (2021-12-09T23:30:44Z) - Reliable Probability Intervals For Classification Using Inductive Venn
Predictors Based on Distance Learning [2.66512000865131]
Inductive Venn Predictors framework を用いて,各予測の正確性に関する確率区間をリアルタイムに計算する。
本稿では,高次元入力を含むアプリケーションにおける情報伝達確率区間を計算するための距離距離距離学習法を提案する。
論文 参考訳(メタデータ) (2021-10-07T00:51:43Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
本稿では,モデルアーキテクチャの解釈可能性と信頼性,外挿を行うためのツールボックスを提案する。
与えられたテストポイントでの予測に対する入力データの影響、モデル予測の不確実性の推定、およびモデル予測の不可知スコアを提供する。
我々の研究は、物理学やより一般的には科学に適用されたMLにおける解釈可能性と信頼性の方法の体系的利用への道を開く。
論文 参考訳(メタデータ) (2021-08-04T16:32:59Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - Cross-Validation and Uncertainty Determination for Randomized Neural
Networks with Applications to Mobile Sensors [0.0]
極端学習マシンは、限られたコンピュータリソースとグリーン機械学習の下で教師付き学習を行うための魅力的で効率的な方法を提供する。
このようなネットワークと回帰手法による教師あり学習について,一般化と予測誤差の整合性および境界性の観点から考察した。
論文 参考訳(メタデータ) (2021-01-06T12:28:06Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
本稿では, 分数分解設計理論に基づく新しいバランスサブサンプル安定予測法を提案する。
設計理論解析により,提案手法は分布シフトによって誘導される予測器間の共起効果を低減できることを示した。
合成および実世界の両方のデータセットに関する数値実験により、BSSPアルゴリズムは未知のテストデータ間で安定した予測を行うためのベースライン法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2020-06-08T07:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。