Solving Quantum-Inspired Perfect Matching Problems via Tutte's
Theorem-Based Hybrid Boolean Constraints
- URL: http://arxiv.org/abs/2301.09833v2
- Date: Thu, 18 May 2023 02:46:09 GMT
- Title: Solving Quantum-Inspired Perfect Matching Problems via Tutte's
Theorem-Based Hybrid Boolean Constraints
- Authors: Moshe Y. Vardi and Zhiwei Zhang
- Abstract summary: We study a new application of hybrid Boolean constraints, which arises in quantum computing.
The problem relates to constrained perfect matching in edge-colored graphs.
We show that direct encodings of the constrained-matching problem as hybrid constraints scale poorly and special techniques are still needed.
- Score: 39.96302127802424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Determining the satisfiability of Boolean constraint-satisfaction problems
with different types of constraints, that is hybrid constraints, is a
well-studied problem with important applications. We study here a new
application of hybrid Boolean constraints, which arises in quantum computing.
The problem relates to constrained perfect matching in edge-colored graphs.
While general-purpose hybrid constraint solvers can be powerful, we show that
direct encodings of the constrained-matching problem as hybrid constraints
scale poorly and special techniques are still needed. We propose a novel
encoding based on Tutte's Theorem in graph theory as well as optimization
techniques. Empirical results demonstrate that our encoding, in suitable
languages with advanced SAT solvers, scales significantly better than a number
of competing approaches on constrained-matching benchmarks. Our study
identifies the necessity of designing problem-specific encodings when applying
powerful general-purpose constraint solvers.
Related papers
- A Hybrid Quantum-Classical Approach to the Electric Mobility Problem [0.8796261172196743]
We suggest a hybrid quantum-classical routine for the NP-hard Electric Vehicle Fleet Charging and Allocation Problem.
We benchmark the performance of the decomposition technique with classical and quantum-inspired metaheuristics.
The major advantage of the proposed approach is that it enables quantum-based methods for this realistic problem with many inequality constraints.
arXiv Detail & Related papers (2023-10-04T12:14:56Z) - Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
We develop a series of approaches for enforcing hard constraints on neural fields.
The constraints can be specified as a linear operator applied to the neural field and its derivatives.
Our approaches are demonstrated in a wide range of real-world applications.
arXiv Detail & Related papers (2023-06-15T08:33:52Z) - Hybrid Quantum Algorithms integrating QAOA, Penalty Dephasing and Zeno
Effect for Solving Binary Optimization Problems with Multiple Constraints [5.259170150405252]
This paper presents a hybrid framework that combines the use of standard Ising Hamiltonians to solve a subset of the constraints.
The resolution of these non-Ising constraints is achieved through either penalty dephasing or the quantum Zeno effect.
arXiv Detail & Related papers (2023-05-14T03:49:10Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - QuAnt: Quantum Annealing with Learnt Couplings [18.40480332882025]
We learn QUBO forms from data through gradient backpropagation instead of deriving them.
We demonstrate the advantages of learnt QUBOs on the diverse problem types of graph matching, 2D point cloud alignment and 3D rotation estimation.
arXiv Detail & Related papers (2022-10-13T17:59:46Z) - Constrained mixers for the quantum approximate optimization algorithm [55.41644538483948]
We present a framework for constructing mixing operators that restrict the evolution to a subspace of the full Hilbert space.
We generalize the "XY"-mixer designed to preserve the subspace of "one-hot" states to the general case of subspaces given by a number of computational basis states.
Our analysis also leads to valid Trotterizations for "XY"-mixer with fewer CX gates than is known to date.
arXiv Detail & Related papers (2022-03-11T17:19:26Z) - Quantum constraint learning for quantum approximate optimization
algorithm [0.0]
This paper introduces a quantum machine learning approach to learn the mixer Hamiltonian required to hard constrain the search subspace.
One can directly plug the learnt unitary into the QAOA framework using an adaptable ansatz.
We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constraints.
arXiv Detail & Related papers (2021-05-14T11:31:14Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
We present a general framework for mining constraints from data.
In particular, we consider the inference in structured output prediction as an integer linear programming (ILP) problem.
We show that our approach can learn to solve 9x9 Sudoku puzzles and minimal spanning tree problems from examples without providing the underlying rules.
arXiv Detail & Related papers (2020-06-18T20:09:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.