論文の概要: Using a Waffle Iron for Automotive Point Cloud Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2301.10100v2
- Date: Mon, 25 Sep 2023 12:10:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 04:15:19.535701
- Title: Using a Waffle Iron for Automotive Point Cloud Semantic Segmentation
- Title(参考訳): ワッフル鉄を用いた自動車点雲セマンティックセグメンテーション
- Authors: Gilles Puy, Alexandre Boulch, Renaud Marlet
- Abstract要約: スパース3D畳み込みは、ディープニューラルネットワークを構築するためのデファクトツールとなっている。
本稿では,スパース畳み込みを必要とせず,最先端の手法に到達できる方法を提案する。
このような性能のレベルは、大規模かつ高性能な3D知覚に相応しいツールに依存して達成可能であることを示す。
- 参考スコア(独自算出の注目度): 66.6890991207065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation of point clouds in autonomous driving datasets requires
techniques that can process large numbers of points efficiently. Sparse 3D
convolutions have become the de-facto tools to construct deep neural networks
for this task: they exploit point cloud sparsity to reduce the memory and
computational loads and are at the core of today's best methods. In this paper,
we propose an alternative method that reaches the level of state-of-the-art
methods without requiring sparse convolutions. We actually show that such level
of performance is achievable by relying on tools a priori unfit for large scale
and high-performing 3D perception. In particular, we propose a novel 3D
backbone, WaffleIron, made almost exclusively of MLPs and dense 2D convolutions
and present how to train it to reach high performance on SemanticKITTI and
nuScenes. We believe that WaffleIron is a compelling alternative to backbones
using sparse 3D convolutions, especially in frameworks and on hardware where
those convolutions are not readily available.
- Abstract(参考訳): 自律運転データセットにおける点雲のセマンティックセグメンテーションは、多数の点を効率的に処理できる技術を必要とする。
スパース3d畳み込み(sparse 3d convolutions)は、このタスクのためにディープニューラルネットワークを構築するためのデファクトツールになっている。
本稿では,スパース畳み込みを必要とせず,最先端の手法に到達する代替手法を提案する。
このようなレベルのパフォーマンスは,大規模かつ高性能な3D知覚に適さないツールに依存して達成可能であることを示す。
特に,MLPと高密度2Dコンボリューションを主成分とする新規な3DバックボーンWaffleIronを提案し,SemanticKITTIとnuScenesで高い性能を達成するためのトレーニング方法を提案する。
waffleironは、スパースな3d畳み込みを使用するバックボーンに対して、特にその畳み込みが容易に利用できないフレームワークやハードウェアにおいて、魅力的な代替手段であると考えています。
関連論文リスト
- MinkUNeXt: Point Cloud-based Large-scale Place Recognition using 3D
Sparse Convolutions [1.124958340749622]
MinkUNeXtは、新しい3D MinkNeXt Blockをベースとした、ポイントクラウドからの位置認識のための効率的かつ効率的なアーキテクチャである。
提案の徹底的な評価は、Oxford RobotCarとIn-houseデータセットを用いて行われている。
論文 参考訳(メタデータ) (2024-03-12T12:25:54Z) - PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained
Image-Language Models [56.324516906160234]
一般化可能な3D部分分割は重要だが、ビジョンとロボティクスでは難しい。
本稿では,事前学習した画像言語モデルGLIPを利用して,3次元点雲の低ショット部分分割法を提案する。
我々は2Dから3Dへの豊富な知識を、ポイントクラウドレンダリングにおけるGLIPに基づく部分検出と新しい2D-to-3Dラベルリフトアルゴリズムにより転送する。
論文 参考訳(メタデータ) (2022-12-03T06:59:01Z) - Spatial Pruned Sparse Convolution for Efficient 3D Object Detection [41.62839541489369]
3Dシーンは多数のバックグラウンドポイントによって支配されており、主に前景オブジェクトにフォーカスする必要がある検出タスクには冗長である。
本稿では,既存の3D CNNの主要なコンポーネントを分析し,データの冗長性を無視し,さらにダウンサンプリングプロセスでそれを増幅することにより,余分な計算オーバーヘッドと不要な計算オーバーヘッドを発生させる。
SPS-ConvとSPSS-ConvとSPRSの2つの変種を含む新しい畳み込み演算子を提案する。
論文 参考訳(メタデータ) (2022-09-28T16:19:06Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
この作業にトランスフォーマーをセットし、それらを形状分類と部分およびシーンセグメンテーションのための階層的なフレームワークに組み込む。
また、各イテレーションにおけるサンプリングとグループ化を活用して、効率的でダイナミックなグローバルなクロスアテンションを計算します。
提案した階層モデルは,最先端の形状分類を平均精度で達成し,従来のセグメンテーション法と同等の結果を得る。
論文 参考訳(メタデータ) (2022-07-31T21:39:15Z) - Focal Sparse Convolutional Networks for 3D Object Detection [121.45950754511021]
我々はスパースCNNの能力を高めるために2つの新しいモジュールを導入する。
焦点スパース・コンボリューション(Focals Conv)であり、焦点スパース・コンボリューションの多様変種である。
スパース・コンボリューションにおける空間的に学習可能な空間空間性は,高度な3次元物体検出に不可欠であることを示す。
論文 参考訳(メタデータ) (2022-04-26T17:34:10Z) - Dynamic Convolution for 3D Point Cloud Instance Segmentation [146.7971476424351]
動的畳み込みに基づく3次元点雲からのインスタンスセグメンテーション手法を提案する。
我々は、同じ意味圏と閉投票を持つ等質点を幾何学的遠近点に対して収集する。
提案手法は提案不要であり、代わりに各インスタンスの空間的および意味的特性に適応する畳み込みプロセスを利用する。
論文 参考訳(メタデータ) (2021-07-18T09:05:16Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
我々はRandLA-Netを紹介した。RandLA-Netは、大規模ポイントクラウドのポイントごとの意味を推論する、効率的で軽量なニューラルネットワークアーキテクチャである。
我々のアプローチの鍵は、より複雑な点選択アプローチではなく、ランダムな点サンプリングを使用することである。
我々のRandLA-Netは、既存のアプローチよりも最大200倍高速な1回のパスで100万ポイントを処理できます。
論文 参考訳(メタデータ) (2021-07-06T05:08:34Z) - SparsePipe: Parallel Deep Learning for 3D Point Clouds [7.181267620981419]
SparsePipeは、ポイントクラウドなどの3Dスパースデータをサポートする。
入力データを複数のプロセッサに分割するバッチ内並列処理を利用する。
我々は、SparsePipeが効果的に並列化でき、現在のクラウドベンチマークでより良いパフォーマンスを得ることができることを示す。
論文 参考訳(メタデータ) (2020-12-27T01:47:09Z) - DV-ConvNet: Fully Convolutional Deep Learning on Point Clouds with
Dynamic Voxelization and 3D Group Convolution [0.7340017786387767]
3次元点雲の解釈は、成分点のランダム性と空間性のために難しい課題である。
本研究では,効率的な3Dポイントクラウド解釈に向けて,標準的な3Dコンボリューションに注意を向ける。
我々のネットワークは、非常に高速に動作し、収束することができるが、いくつかのベンチマークデータセットの最先端の手法と比較して、オンパーまたはさらにパフォーマンスが向上する。
論文 参考訳(メタデータ) (2020-09-07T07:45:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。