論文の概要: Feasibility Analysis of Federated Neural Networks for Explainable Detection of Atrial Fibrillation
- arxiv url: http://arxiv.org/abs/2410.19781v1
- Date: Mon, 14 Oct 2024 15:06:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 08:19:28.071058
- Title: Feasibility Analysis of Federated Neural Networks for Explainable Detection of Atrial Fibrillation
- Title(参考訳): 心房細動の説明可能な検出のためのフェデレーションニューラルネットワークの可能性分析
- Authors: Diogo Reis Santos, Andrea Protani, Lorenzo Giusti, Albert Sund Aillet, Pierpaolo Brutti, Luigi Serio,
- Abstract要約: 心房細動 (AFib) の早期発見は, 無症候性, 発作性に困難である。
本研究は、生のECGデータを用いてAFibを検出するために、フェデレートラーニング(FL)プラットフォーム上でニューラルネットワークをトレーニングする可能性を評価する。
- 参考スコア(独自算出の注目度): 1.6053176639259055
- License:
- Abstract: Early detection of atrial fibrillation (AFib) is challenging due to its asymptomatic and paroxysmal nature. However, advances in deep learning algorithms and the vast collection of electrocardiogram (ECG) data from devices such as the Internet of Things (IoT) hold great potential for the development of an effective solution. This study assesses the feasibility of training a neural network on a Federated Learning (FL) platform to detect AFib using raw ECG data. The performance of an advanced neural network is evaluated in centralized, local, and federated settings. The effects of different aggregation methods on model performance are investigated, and various normalization strategies are explored to address issues related to neural network federation. The results demonstrate that federated learning can significantly improve the accuracy of detection over local training. The best performing federated model achieved an F1 score of 77\%, improving performance by 15\% compared to the average performance of individually trained clients. This study emphasizes the promise of FL in medical diagnostics, offering a privacy-preserving and interpretable solution for large-scale healthcare applications.
- Abstract(参考訳): 心房細動 (AFib) の早期発見は, 無症候性, 発作性に困難である。
しかし、ディープラーニングアルゴリズムの進歩とIoT(Internet of Things)などのデバイスからの大量の心電図(ECG)データ収集は、効果的なソリューションの開発に大きな可能性を秘めている。
本研究は、生のECGデータを用いてAFibを検出するために、フェデレートラーニング(FL)プラットフォーム上でニューラルネットワークをトレーニングする可能性を評価する。
高度なニューラルネットワークの性能は、集中的、局所的、フェデレーションされた設定で評価される。
モデル性能に異なるアグリゲーション法が与える影響について検討し,ニューラルネットワークのフェデレーションに関わる問題に対処するために,様々な正規化戦略について検討した。
その結果,フェデレート学習は局所訓練による検出精度を著しく向上させることができることがわかった。
最高のフェデレーションモデルでは、F1スコアが77\%に達し、個別に訓練されたクライアントの平均パフォーマンスよりも15\%向上した。
本研究は、医療診断におけるFLの約束を強調し、大規模医療アプリケーションに対するプライバシー保護および解釈可能なソリューションを提供する。
関連論文リスト
- Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
分散トレーニングは、大規模な医用画像データセットの処理を容易にし、疾患診断の精度と効率を向上させる。
本稿では,データプライバシと効率的な疾患診断という2つの課題に対処するために,Federated Learning(FL)を活用した医用画像分類の革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-15T09:07:19Z) - Detection and Classification of Diabetic Retinopathy using Deep Learning
Algorithms for Segmentation to Facilitate Referral Recommendation for Test
and Treatment Prediction [0.0]
本研究は糖尿病網膜症(DR)の臨床的課題について考察する。
提案手法は、畳み込みニューラルネットワーク(CNN)を用いたトランスファーラーニングを利用して、単一の基礎写真を用いた自動DR検出を行う。
Jaccard、F1、リコール、精度、精度の高評価スコアは、網膜病理評価における診断能力を高めるモデルの可能性を示している。
論文 参考訳(メタデータ) (2024-01-05T11:19:24Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
既存のディープラーニングソリューションには,3つの大きな制限がある。
我々はフェデレートグラフベースの多軌道進化ネットワークであるFedGmTE-Net++を紹介する。
フェデレーションの力を利用して、限られたデータセットを持つ多種多様な病院の地域学習を集約する。
論文 参考訳(メタデータ) (2024-01-01T10:20:01Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
本稿では,物理にヒントを得たハイブリットアテンション(PIHA)機構と,この問題に対処するためのOFA評価プロトコルを提案する。
PIHAは、物理的情報の高レベルなセマンティクスを活用して、ターゲットの局所的なセマンティクスを認識した特徴群を活性化し、誘導する。
提案手法は,ASCパラメータが同じ12のテストシナリオにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-27T14:39:41Z) - FaFCNN: A General Disease Classification Framework Based on Feature
Fusion Neural Networks [4.097623533226476]
本稿では,機能認識型統合相関ニューラルネットワーク (FaFCNN) を提案する。
実験結果から,事前学習による強化特徴を用いた訓練により,無作為森林法よりも高い性能向上が得られた。
論文 参考訳(メタデータ) (2023-07-24T04:23:08Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
フェデレートラーニング(FL)は医用画像解析に広く用いられている。
FLのパフォーマンスは、多発性硬化症(MS)病変セグメンテーションタスクに制限される。
2つの効果的な再重み付け機構によるFLMS病変分割フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-03T14:06:03Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Effective classification of ecg signals using enhanced convolutional
neural network in iot [0.0]
本稿では、動的ソースルーティング(DSR)とエネルギーリンク品質(REL)に基づくIoTヘルスケアプラットフォームのためのルーティングシステムを提案する。
Deep-ECGは、重要な特徴を抽出するためにディープCNNを使用し、単純かつ高速な距離関数を用いて比較する。
その結果,提案手法は分類精度において他よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-02-08T13:37:23Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - The Effect of Data Augmentation on Classification of Atrial Fibrillation
in Short Single-Lead ECG Signals Using Deep Neural Networks [12.39263432933148]
クラス不均衡問題に対するオーバーサンプリングなど,様々なデータ拡張アルゴリズムの影響について検討する。
その結果, 深層学習に基づくAF信号分類手法は, オーバーサンプリングよりも, GANとGMMを用いたデータ拡張の恩恵が大きいことがわかった。
論文 参考訳(メタデータ) (2020-02-07T16:08:19Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。