Hybrid quantum system with strong magnetic coupling of a magnetic vortex
to a nanomechanical resonator
- URL: http://arxiv.org/abs/2301.10438v1
- Date: Wed, 25 Jan 2023 07:12:50 GMT
- Title: Hybrid quantum system with strong magnetic coupling of a magnetic vortex
to a nanomechanical resonator
- Authors: Bo-Long Wang, Xin-Lei Hei, Xing-Liang Dong, Xiao-Yu Yao, Jia-Qiang
Chen, Yi-Fan Qiao, Fu-Li Li, and Peng-Bo Li
- Abstract summary: We present a hybrid quantum system composed of a magnetic vortex and a nanomechanical resonator.
The gyrotropic mode of the vortex can coherently couple to the quantized mechanical motion of the resonator through magnetic interaction.
- Score: 2.04473038220853
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a hybrid quantum system composed of a magnetic vortex and a
nanomechanical resonator. We show that the gyrotropic mode of the vortex can
coherently couple to the quantized mechanical motion of the resonator through
magnetic interaction. Benefiting from the topologically protected properties
and the low damping of vortices, as well as the excellent coherent features of
nanomechanical resonators, the proposed system can achieve strong coupling and
even the ultrastrong coupling regime by choosing appropriate parameters. In
combination with other quantum systems, such as a nitrogen-vacancy (NV) center,
coherent state transfer between the vortex excitation and the spin can be
realized. This setup provides a potential platform for quantum information
processing and investigations into the ultrastrong coupling regimes and
macroscopic quantum physics.
Related papers
- Quantum-induced Stochastic Optomechanical Dynamics [0.0]
Quantum fluctuations lead to state-dependent non-equilibrium noise, which is exponentially enhanced by wavepacket delocalization.
For the case of nanoparticles coupled by the Coulomb interaction such noise can imprint potentially measurable signatures in multiparticle levitation experiments.
arXiv Detail & Related papers (2024-01-29T19:30:21Z) - Programmable Quantum Processors based on Spin Qubits with
Mechanically-Mediated Interactions and Transport [0.0]
We describe a method for programmable control of multi-qubit spin systems.
We show coherent manipulation and mechanical transport of a proximal spin qubit by utilizing nuclear spin memory.
With realistic improvements the high-cooperativity regime can be reached, offering a new avenue towards scalable quantum information processing with spin qubits.
arXiv Detail & Related papers (2023-07-23T00:52:19Z) - Quantum parametric amplifiation of phonon-mediated magnon-spin
interaction [12.464802118191724]
We show how to strongly couple the magnon modes in a hybrid tripartite system.
The coherent magnon-phonon coupling is engineered by introducing the quantum parametric amplifiation of the mechanical motion.
Our work opens up prospects for developing novel quantum transducers, quantum memories and high-precision measurements.
arXiv Detail & Related papers (2023-07-22T02:33:28Z) - Enhanced tripartite interactions in spin-magnon-mechanical hybrid
systems [0.0]
We predict a tripartite coupling mechanism in a hybrid setup comprising a single NV center and a micromagnet.
We propose to realize direct and strong tripartite interactions among single NV spins, magnons and phonons via modulating the relative motion between the NV center and the micromagnet.
arXiv Detail & Related papers (2023-01-25T06:31:27Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Entanglement enhanced and one-way steering in PT -symmetric cavity
magnomechanics [8.345632941376673]
We study creation of entanglement and quantum steering in a symmetric cavity magnomechanical system.
One-way quantum steering between magnon-phonon and photon-phonon modes can be obtained in the unbroken-PT -symmetric regime.
This work opens up a route to explore the characteristics of quantum entanglement and steering in magnomechanical systems.
arXiv Detail & Related papers (2020-08-10T02:46:17Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.