Quantum anomaly detection in the latent space of proton collision events at the LHC
- URL: http://arxiv.org/abs/2301.10780v3
- Date: Tue, 10 Dec 2024 16:31:45 GMT
- Title: Quantum anomaly detection in the latent space of proton collision events at the LHC
- Authors: Vasilis Belis, Kinga Anna Woźniak, Ema Puljak, Panagiotis Barkoutsos, Günther Dissertori, Michele Grossi, Maurizio Pierini, Florentin Reiter, Ivano Tavernelli, Sofia Vallecorsa,
- Abstract summary: We propose a strategy for anomaly detection tasks at the LHC based on unsupervised quantum machine learning.
We show that the observed performance enhancement is related to the quantum resources utilised by the model.
- Score: 0.7493013403244345
- License:
- Abstract: The ongoing quest to discover new phenomena at the LHC necessitates the continuous development of algorithms and technologies. Established approaches like machine learning, along with emerging technologies such as quantum computing show promise in the enhancement of experimental capabilities. In this work, we propose a strategy for anomaly detection tasks at the LHC based on unsupervised quantum machine learning, and demonstrate its effectiveness in identifying new phenomena. The designed quantum models, an unsupervised kernel machine and two clustering algorithms, are trained to detect new-physics events using a latent representation of LHC data, generated by an autoencoder designed to accommodate current quantum hardware limitations on problem size. For kernel-based anomaly detection, we implement an instance of the model on a quantum computer, and we identify a regime where it significantly outperforms its classical counterparts. We show that the observed performance enhancement is related to the quantum resources utilised by the model.
Related papers
- Quantum Pattern Detection: Accurate State- and Circuit-based Analyses [2.564905016909138]
We propose a framework for the automatic detection of quantum patterns using state- and circuit-based code analysis.
In an empirical evaluation, we show that our framework is able to detect quantum patterns very accurately and that it outperforms existing quantum pattern detection approaches.
arXiv Detail & Related papers (2025-01-27T09:42:41Z) - Quantum similarity learning for anomaly detection [0.0]
We explore the potential of quantum computers for anomaly detection through similarity learning.
In the realm of noisy intermediate-scale quantum devices, we employ a hybrid classical-quantum network to search for heavy scalar resonances.
Our analysis highlights the applicability of quantum algorithms for LHC data analysis, where improvements are anticipated with the advent of fault-tolerant quantum computers.
arXiv Detail & Related papers (2024-11-15T03:55:09Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum Visual Feature Encoding Revisited [8.839645003062456]
This paper revisits the quantum visual encoding strategies, the initial step in quantum machine learning.
Investigating the root cause, we uncover that the existing quantum encoding design fails to ensure information preservation of the visual features after the encoding process.
We introduce a new loss function named Quantum Information Preserving to minimize this gap, resulting in enhanced performance of quantum machine learning algorithms.
arXiv Detail & Related papers (2024-05-30T06:15:08Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Long-lived Particles Anomaly Detection with Parametrized Quantum Circuits [0.0]
We propose an anomaly detection algorithm based on a parametrized quantum circuit.
This algorithm has been trained on a classical computer and tested with simulations as well as on real quantum hardware.
arXiv Detail & Related papers (2023-12-07T11:50:42Z) - Unravelling physics beyond the standard model with classical and quantum
anomaly detection [1.014313095022286]
Current experiments do not indicate clear signs of new physics that could guide the development of additional Beyond Standard Model (BSM) theories.
We propose a novel strategy to perform anomaly detection in a supervised learning setting, based on the artificial creation of anomalies through a random process.
Even more promising, we find employing an SVC trained to identify the artificial anomalies, it is possible to identify realistic BSM events with high accuracy.
arXiv Detail & Related papers (2023-01-25T19:00:14Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.