Quantum anomaly detection in the latent space of proton collision events at the LHC
- URL: http://arxiv.org/abs/2301.10780v3
- Date: Tue, 10 Dec 2024 16:31:45 GMT
- Title: Quantum anomaly detection in the latent space of proton collision events at the LHC
- Authors: Vasilis Belis, Kinga Anna Woźniak, Ema Puljak, Panagiotis Barkoutsos, Günther Dissertori, Michele Grossi, Maurizio Pierini, Florentin Reiter, Ivano Tavernelli, Sofia Vallecorsa,
- Abstract summary: We propose a strategy for anomaly detection tasks at the LHC based on unsupervised quantum machine learning.<n>We show that the observed performance enhancement is related to the quantum resources utilised by the model.
- Score: 0.7493013403244345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ongoing quest to discover new phenomena at the LHC necessitates the continuous development of algorithms and technologies. Established approaches like machine learning, along with emerging technologies such as quantum computing show promise in the enhancement of experimental capabilities. In this work, we propose a strategy for anomaly detection tasks at the LHC based on unsupervised quantum machine learning, and demonstrate its effectiveness in identifying new phenomena. The designed quantum models, an unsupervised kernel machine and two clustering algorithms, are trained to detect new-physics events using a latent representation of LHC data, generated by an autoencoder designed to accommodate current quantum hardware limitations on problem size. For kernel-based anomaly detection, we implement an instance of the model on a quantum computer, and we identify a regime where it significantly outperforms its classical counterparts. We show that the observed performance enhancement is related to the quantum resources utilised by the model.
Related papers
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Tensor Network for Anomaly Detection in the Latent Space of Proton Collision Events at the LHC [1.092813092010402]
We propose a tensor network-based strategy for anomaly detection at the LHC.<n>Our results highlight the potential of tensor networks to enhance new-physics discovery.
arXiv Detail & Related papers (2025-05-30T14:18:53Z) - Quantum Pattern Detection: Accurate State- and Circuit-based Analyses [2.564905016909138]
We propose a framework for the automatic detection of quantum patterns using state- and circuit-based code analysis.
In an empirical evaluation, we show that our framework is able to detect quantum patterns very accurately and that it outperforms existing quantum pattern detection approaches.
arXiv Detail & Related papers (2025-01-27T09:42:41Z) - Unsupervised Quantum Anomaly Detection on Noisy Quantum Processors [1.2325897339438878]
We provide a systematic analysis of the generalization properties of the One-Class Support Vector Machine (OCSVM) algorithm.
Results were theoretically simulated and experimentally validated on trapped-ion and superconducting quantum processors.
arXiv Detail & Related papers (2024-11-25T22:42:38Z) - Quantum similarity learning for anomaly detection [0.0]
We explore the potential of quantum computers for anomaly detection through similarity learning.
In the realm of noisy intermediate-scale quantum devices, we employ a hybrid classical-quantum network to search for heavy scalar resonances.
Our analysis highlights the applicability of quantum algorithms for LHC data analysis, where improvements are anticipated with the advent of fault-tolerant quantum computers.
arXiv Detail & Related papers (2024-11-15T03:55:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum Visual Feature Encoding Revisited [8.839645003062456]
This paper revisits the quantum visual encoding strategies, the initial step in quantum machine learning.
Investigating the root cause, we uncover that the existing quantum encoding design fails to ensure information preservation of the visual features after the encoding process.
We introduce a new loss function named Quantum Information Preserving to minimize this gap, resulting in enhanced performance of quantum machine learning algorithms.
arXiv Detail & Related papers (2024-05-30T06:15:08Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Long-lived Particles Anomaly Detection with Parametrized Quantum
Circuits [0.0]
We propose an anomaly detection algorithm based on a parametrized quantum circuit.
This algorithm has been trained on a classical computer and tested with simulations as well as on real quantum hardware.
arXiv Detail & Related papers (2023-12-07T11:50:42Z) - Unravelling physics beyond the standard model with classical and quantum
anomaly detection [1.014313095022286]
Current experiments do not indicate clear signs of new physics that could guide the development of additional Beyond Standard Model (BSM) theories.
We propose a novel strategy to perform anomaly detection in a supervised learning setting, based on the artificial creation of anomalies through a random process.
Even more promising, we find employing an SVC trained to identify the artificial anomalies, it is possible to identify realistic BSM events with high accuracy.
arXiv Detail & Related papers (2023-01-25T19:00:14Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Quantum One-class Classification With a Distance-based Classifier [1.316309856358873]
existing errors in the current quantum hardware and the low number of qubits available make it necessary to use solutions that use fewer qubits and fewer operations.
We present a new classifier based on named Quantum One-class Quantum computers (QOCC) that consists of a minimal quantum machine learning model with fewer operations and qubits.
arXiv Detail & Related papers (2020-07-31T17:53:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.