論文の概要: Visiting Distant Neighbors in Graph Convolutional Networks
- arxiv url: http://arxiv.org/abs/2301.10960v3
- Date: Wed, 22 May 2024 19:57:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-26 21:42:06.122510
- Title: Visiting Distant Neighbors in Graph Convolutional Networks
- Title(参考訳): グラフ畳み込みネットワークにおける周辺訪問
- Authors: Alireza Hashemi, Hernan Makse,
- Abstract要約: 本稿では,グラフデータの深層学習のためのグラフ畳み込みネットワーク手法を,隣接ノードの高次化に拡張する。
この上位の隣人の訪問客は、オリジナルのモデルよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We extend the graph convolutional network method for deep learning on graph data to higher order in terms of neighboring nodes. In order to construct representations for a node in a graph, in addition to the features of the node and its immediate neighboring nodes, we also include more distant nodes in the calculations. In experimenting with a number of publicly available citation graph datasets, we show that this higher order neighbor visiting pays off by outperforming the original model especially when we have a limited number of available labeled data points for the training of the model.
- Abstract(参考訳): 本稿では,グラフデータの深層学習のためのグラフ畳み込みネットワーク手法を,隣接ノードの高次化に拡張する。
グラフ内のノードの表現を構成するために、ノードとそのすぐ隣のノードの特徴に加えて、計算にもっと遠いノードも含む。
多くの公開引用グラフデータセットを用いて実験したところ、特にモデルのトレーニングに利用可能なラベル付きデータポイントが限られている場合に、この上位の隣人の訪問は元のモデルよりも優れていることがわかった。
関連論文リスト
- Neighbor Overlay-Induced Graph Attention Network [5.792501481702088]
グラフニューラルネットワーク(GNN)は、グラフデータを表現できることから、大きな注目を集めている。
本研究は、次の2つのアイデアを持つ、隣接するオーバーレイ誘発グラフアテンションネットワーク(NO-GAT)を提案する。
グラフベンチマークデータセットに関する実証研究は、提案されたNO-GATが最先端モデルより一貫して優れていることを示している。
論文 参考訳(メタデータ) (2024-08-16T15:01:28Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Local Graph Embeddings Based on Neighbors Degree Frequency of Nodes [0.0]
本稿では,ノードの特定の局所的特徴とベクトル表現を定義することによって,グラフ機械学習とネットワーク解析の戦略を提案する。
Breath-First Search を通じてノードの次数の概念を拡張することにより、bf 中心関数の一般族が定義される。
これらの局所的な特徴に深層学習を適用することで、中心性と近接性を学ぶことができることを示す。
論文 参考訳(メタデータ) (2022-07-30T07:07:30Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Learning Sparse Graphs with a Core-periphery Structure [14.112444998191698]
本稿では,コア周辺構造ネットワークに関連するデータ生成モデルを提案する。
ネットワークのコア部分における密接な(疎い)接続を誘導するスパースグラフとニューダルコアスコアを推論する。
論文 参考訳(メタデータ) (2021-10-08T10:41:30Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
階層型推論グラフネットワークの学習による顔の親和性検証の問題点について検討する。
より強力で柔軟なキャパシティを利用するために,星型推論グラフネットワーク(S-RGN)を開発した。
また、より強力で柔軟なキャパシティを利用する階層型推論グラフネットワーク(H-RGN)も開発しています。
論文 参考訳(メタデータ) (2021-09-06T03:16:56Z) - Seeing All From a Few: Nodes Selection Using Graph Pooling for Graph
Clustering [37.68977275752782]
ノイズの多いエッジとグラフのノードは、クラスタリング結果を悪化させる可能性がある。
ノイズの多いノードやエッジに対するグラフクラスタリングの堅牢性を改善するために,新しいデュアルグラフ埋め込みネットワーク(DGEN)を提案する。
3つのベンチマークグラフデータセットの実験は、いくつかの最先端アルゴリズムと比較して優位性を示す。
論文 参考訳(メタデータ) (2021-04-30T06:51:51Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCNはグラフ学習に適したノード機能である。
エンドツーエンドでCatGCNを訓練し、半教師付きノード分類でそれを実証する。
論文 参考訳(メタデータ) (2020-09-11T09:25:17Z) - node2coords: Graph Representation Learning with Wasserstein Barycenters [59.07120857271367]
グラフの表現学習アルゴリズムである node2coords を導入する。
低次元空間を同時に学習し、その空間内のノードを座標する。
実験の結果,node2coordで学習した表現は解釈可能であることがわかった。
論文 参考訳(メタデータ) (2020-07-31T13:14:25Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。