論文の概要: Bayesian Detection of Mesoscale Structures in Pathway Data on Graphs
- arxiv url: http://arxiv.org/abs/2301.11120v1
- Date: Mon, 16 Jan 2023 12:45:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-29 13:12:16.723739
- Title: Bayesian Detection of Mesoscale Structures in Pathway Data on Graphs
- Title(参考訳): グラフ上の経路データにおけるメソスケール構造のベイズ検出
- Authors: Luka V. Petrovi\'c, Vincenzo Perri
- Abstract要約: メソスケール構造は 複雑なシステムの抽象化と解析の 不可欠な部分です
それらは、社会的または引用ネットワークにおけるコミュニティ、企業間相互作用における役割、または輸送ネットワークにおける中核周辺構造におけるコミュニティを表現することができる。
我々は,グループ内のノードの最適分割と高次ネットワークの最適ダイナミクスを同時にモデル化するベイズ的アプローチを導出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mesoscale structures are an integral part of the abstraction and analysis of
complex systems. They reveal a node's function in the network, and facilitate
our understanding of the network dynamics. For example, they can represent
communities in social or citation networks, roles in corporate interactions, or
core-periphery structures in transportation networks. We usually detect
mesoscale structures under the assumption of independence of interactions.
Still, in many cases, the interactions invalidate this assumption by occurring
in a specific order. Such patterns emerge in pathway data; to capture them, we
have to model the dependencies between interactions using higher-order network
models. However, the detection of mesoscale structures in higher-order networks
is still under-researched. In this work, we derive a Bayesian approach that
simultaneously models the optimal partitioning of nodes in groups and the
optimal higher-order network dynamics between the groups. In synthetic data we
demonstrate that our method can recover both standard proximity-based
communities and role-based groupings of nodes. In synthetic and real world data
we show that it can compete with baseline techniques, while additionally
providing interpretable abstractions of network dynamics.
- Abstract(参考訳): メソスケール構造は複雑なシステムの抽象化と解析の不可欠な部分である。
それらはネットワーク内のノードの機能を明らかにし、ネットワークのダイナミクスの理解を促進する。
例えば、社会や引用ネットワークにおけるコミュニティ、企業間相互作用における役割、輸送ネットワークにおける中核周辺構造などを表現することができる。
通常、相互作用の独立性を前提としたメソスケール構造を検出する。
それでも多くの場合、相互作用は特定の順序で起こることによってこの仮定を無効にする。
このようなパターンは経路データに現れ、それらをキャプチャするには、上位ネットワークモデルを使用してインタラクション間の依存関係をモデル化する必要があります。
しかし,高次ネットワークにおけるメソスケール構造の検出はまだ検討中である。
本研究では,グループ内のノードの最適分割とグループ間の高次ネットワークの最適ダイナミクスを同時にモデル化するベイズ的アプローチを導出する。
合成データにおいて,本手法は,近接型コミュニティとノードの役割に基づくグループ化の両方を回復できることを実証する。
合成および実世界のデータでは、ネットワークダイナミクスの解釈可能な抽象化を提供しながら、ベースライン技術と競合できることを示す。
関連論文リスト
- Semantic Loss Functions for Neuro-Symbolic Structured Prediction [74.18322585177832]
このような構造に関する知識を象徴的に定義した意味的損失をトレーニングに注入する。
記号の配置に非依存であり、それによって表現される意味論にのみ依存する。
識別型ニューラルモデルと生成型ニューラルモデルの両方と組み合わせることができる。
論文 参考訳(メタデータ) (2024-05-12T22:18:25Z) - Topological Neural Networks: Mitigating the Bottlenecks of Graph Neural
Networks via Higher-Order Interactions [1.994307489466967]
この研究は、メッセージパッシングニューラルネットワークにおいて、ネットワークの幅、深さ、グラフトポロジがオーバーカッシング現象に与える影響を明らかにする理論的枠組みから始まる。
この研究は、トポロジカルニューラルネットワークを通して高次相互作用と多関係帰納バイアスへと流れていく。
グラフ注意ネットワークにインスパイアされた2つのトポロジカルアテンションネットワーク(Simplicial and Cell Attention Networks)が提案されている。
論文 参考訳(メタデータ) (2024-02-10T08:26:06Z) - Inferring community structure in attributed hypergraphs using stochastic
block models [3.335932527835653]
本研究では,ノード属性データをハイパーグラフのコミュニティ構造学習に組み込む統計フレームワークを開発した。
我々は,HyperNEOと呼ぶモデルにより,人工・経験的ハイパーグラフにおけるコミュニティ構造の学習が促進されることを実証した。
我々は,現実世界の複合システムにおける高次コミュニティ構造の調査と理解の拡大を期待する。
論文 参考訳(メタデータ) (2024-01-01T07:31:32Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
合成ネットワーク一般化(CoRelNet)と呼ばれる類似度分布スコアに基づく簡単なアーキテクチャを導入する。
単純なアーキテクチャの選択は、分布外一般化において既存のモデルより優れていることが分かる。
論文 参考訳(メタデータ) (2022-06-09T16:24:01Z) - The interplay between ranking and communities in networks [0.0]
本稿では,コミュニティ構造と階層構造との相互作用に基づく生成モデルを提案する。
それぞれのノードが相互作用機構に優先順位を持ち、同じ好みを持つノードが相互作用する可能性が高いと仮定する。
本手法は, コミュニティ検出とランキング抽出の2つの標準手法と比較して, 実世界の合成データと実世界のデータを比較した。
論文 参考訳(メタデータ) (2021-12-23T16:10:28Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Layer-stacked Attention for Heterogeneous Network Embedding [0.0]
レイヤスタックATTention Embedding (LATTE)は、各レイヤで上位のメタ関係を自動的に分解するアーキテクチャである。
LATTEは、異なる近傍範囲の異なるタイプのノードに対して、より解釈可能なアグリゲーションスキームを提供する。
帰納的ノード分類タスクと帰納的ノード分類タスクの両方において、LATTEは既存のアプローチと比較して最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2020-09-17T05:13:41Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
本研究では,階層型コミュニティ検出の効率向上のために,局所構造ネットワーク特性をプロキシとして利用する方法について検討する。
また,ネットワークプルーニングの性能への影響を,階層的コミュニティ検出をより効率的にするための補助的手法として検証する。
論文 参考訳(メタデータ) (2020-09-15T00:16:12Z) - Shift Aggregate Extract Networks [3.3263205689999453]
大規模グラフの効率的な表現を学習するために,階層分解に基づくアーキテクチャを導入する。
我々のフレームワークは、カーネルメソッドで使用される古典的なR分解を拡張し、ネストした部分関係を可能にする。
我々は,我々のアプローチが,大規模ソーシャルネットワークデータセット上で現在最先端のグラフ分類手法より優れていることを実証的に示す。
論文 参考訳(メタデータ) (2017-03-16T09:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。