Coin Sampling: Gradient-Based Bayesian Inference without Learning Rates
- URL: http://arxiv.org/abs/2301.11294v3
- Date: Thu, 1 Jun 2023 11:49:57 GMT
- Title: Coin Sampling: Gradient-Based Bayesian Inference without Learning Rates
- Authors: Louis Sharrock, Christopher Nemeth
- Abstract summary: We introduce a suite of new particle-based methods for scalable Bayesian inference based on coin betting.
We demonstrate comparable performance to other ParVI algorithms with no need to tune a learning rate.
- Score: 1.90365714903665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, particle-based variational inference (ParVI) methods such as
Stein variational gradient descent (SVGD) have grown in popularity as scalable
methods for Bayesian inference. Unfortunately, the properties of such methods
invariably depend on hyperparameters such as the learning rate, which must be
carefully tuned by the practitioner in order to ensure convergence to the
target measure at a suitable rate. In this paper, we introduce a suite of new
particle-based methods for scalable Bayesian inference based on coin betting,
which are entirely learning-rate free. We illustrate the performance of our
approach on a range of numerical examples, including several high-dimensional
models and datasets, demonstrating comparable performance to other ParVI
algorithms with no need to tune a learning rate.
Related papers
- Semi-Implicit Functional Gradient Flow [30.32233517392456]
We propose a functional gradient ParVI method that uses perturbed particles as the approximation family.
The corresponding functional gradient flow, which can be estimated via denoising score matching, exhibits strong theoretical convergence guarantee.
arXiv Detail & Related papers (2024-10-23T15:00:30Z) - CKD: Contrastive Knowledge Distillation from A Sample-wise Perspective [48.99488315273868]
We present a contrastive knowledge distillation approach, which can be formulated as a sample-wise alignment problem with intra- and inter-sample constraints.
Our method minimizes logit differences within the same sample by considering their numerical values.
We conduct comprehensive experiments on three datasets including CIFAR-100, ImageNet-1K, and MS COCO.
arXiv Detail & Related papers (2024-04-22T11:52:40Z) - Bayesian Deep Learning for Remaining Useful Life Estimation via Stein
Variational Gradient Descent [14.784809634505903]
We show that Bayesian deep learning models trained via Stein variational gradient descent consistently outperform with respect to convergence speed and predictive performance.
We propose a method to enhance performance based on the uncertainty information provided by the Bayesian models.
arXiv Detail & Related papers (2024-02-02T02:21:06Z) - Neural Operator Variational Inference based on Regularized Stein
Discrepancy for Deep Gaussian Processes [23.87733307119697]
We introduce Neural Operator Variational Inference (NOVI) for Deep Gaussian Processes.
NOVI uses a neural generator to obtain a sampler and minimizes the Regularized Stein Discrepancy in L2 space between the generated distribution and true posterior.
We demonstrate that the bias introduced by our method can be controlled by multiplying the divergence with a constant, which leads to robust error control and ensures the stability and precision of the algorithm.
arXiv Detail & Related papers (2023-09-22T06:56:35Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - Bayesian Beta-Bernoulli Process Sparse Coding with Deep Neural Networks [11.937283219047984]
Several approximate inference methods have been proposed for deep discrete latent variable models.
We propose a non-parametric iterative algorithm for learning discrete latent representations in such deep models.
We evaluate our method across datasets with varying characteristics and compare our results to current amortized approximate inference methods.
arXiv Detail & Related papers (2023-03-14T20:50:12Z) - Quasi Black-Box Variational Inference with Natural Gradients for
Bayesian Learning [84.90242084523565]
We develop an optimization algorithm suitable for Bayesian learning in complex models.
Our approach relies on natural gradient updates within a general black-box framework for efficient training with limited model-specific derivations.
arXiv Detail & Related papers (2022-05-23T18:54:27Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Sparse Gaussian Processes Revisited: Bayesian Approaches to
Inducing-Variable Approximations [27.43948386608]
Variational inference techniques based on inducing variables provide an elegant framework for scalable estimation in Gaussian process (GP) models.
In this work we challenge the common wisdom that optimizing the inducing inputs in variational framework yields optimal performance.
arXiv Detail & Related papers (2020-03-06T08:53:18Z) - Stein Variational Inference for Discrete Distributions [70.19352762933259]
We propose a simple yet general framework that transforms discrete distributions to equivalent piecewise continuous distributions.
Our method outperforms traditional algorithms such as Gibbs sampling and discontinuous Hamiltonian Monte Carlo.
We demonstrate that our method provides a promising tool for learning ensembles of binarized neural network (BNN)
In addition, such transform can be straightforwardly employed in gradient-free kernelized Stein discrepancy to perform goodness-of-fit (GOF) test on discrete distributions.
arXiv Detail & Related papers (2020-03-01T22:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.