CellMix: A General Instance Relationship based Method for Data
Augmentation Towards Pathology Image Classification
- URL: http://arxiv.org/abs/2301.11513v2
- Date: Sun, 23 Jul 2023 01:50:08 GMT
- Title: CellMix: A General Instance Relationship based Method for Data
Augmentation Towards Pathology Image Classification
- Authors: Tianyi Zhang, Zhiling Yan, Chunhui Li, Nan Ying, Yanli Lei, Yunlu
Feng, Yu Zhao, Guanglei Zhang
- Abstract summary: In pathology image analysis, obtaining and maintaining high-quality annotated samples is an extremely labor-intensive task.
We propose the CellMix framework, which employs a novel distribution-oriented in-place shuffle approach.
Our experiments in pathology image classification tasks demonstrate state-of-the-art (SOTA) performance on 7 distinct datasets.
- Score: 6.9596321268519326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In pathology image analysis, obtaining and maintaining high-quality annotated
samples is an extremely labor-intensive task. To overcome this challenge,
mixing-based methods have emerged as effective alternatives to traditional
preprocessing data augmentation techniques. Nonetheless, these methods fail to
fully consider the unique features of pathology images, such as local
specificity, global distribution, and inner/outer-sample instance
relationships. To better comprehend these characteristics and create valuable
pseudo samples, we propose the CellMix framework, which employs a novel
distribution-oriented in-place shuffle approach. By dividing images into
patches based on the granularity of pathology instances and shuffling them
within the same batch, the absolute relationships between instances can be
effectively preserved when generating new samples. Moreover, we develop a
curriculum learning-inspired, loss-driven strategy to handle perturbations and
distribution-related noise during training, enabling the model to adaptively
fit the augmented data. Our experiments in pathology image classification tasks
demonstrate state-of-the-art (SOTA) performance on 7 distinct datasets. This
innovative instance relationship-centered method has the potential to inform
general data augmentation approaches for pathology image classification. The
associated codes are available at https://github.com/sagizty/CellMix.
Related papers
- Unsupervised Contrastive Analysis for Salient Pattern Detection using Conditional Diffusion Models [13.970483987621135]
Contrastive Analysis (CA) aims to identify patterns in images that allow distinguishing between a background (BG) dataset and a target (TG) dataset (i.e. unhealthy subjects)
Recent works on this topic rely on variational autoencoders (VAE) or contrastive learning strategies to learn the patterns that separate TG samples from BG samples in a supervised manner.
We employ a self-supervised contrastive encoder to learn a latent representation encoding only common patterns from input images, using samples exclusively from the BG dataset during training, and approximating the distribution of the target patterns by leveraging data augmentation techniques.
arXiv Detail & Related papers (2024-06-02T15:19:07Z) - ProbMCL: Simple Probabilistic Contrastive Learning for Multi-label Visual Classification [16.415582577355536]
Multi-label image classification presents a challenging task in many domains, including computer vision and medical imaging.
Recent advancements have introduced graph-based and transformer-based methods to improve performance and capture label dependencies.
We propose Probabilistic Multi-label Contrastive Learning (ProbMCL), a novel framework to address these challenges.
arXiv Detail & Related papers (2024-01-02T22:15:20Z) - Self-Evolution Learning for Mixup: Enhance Data Augmentation on Few-Shot
Text Classification Tasks [75.42002070547267]
We propose a self evolution learning (SE) based mixup approach for data augmentation in text classification.
We introduce a novel instance specific label smoothing approach, which linearly interpolates the model's output and one hot labels of the original samples to generate new soft for label mixing up.
arXiv Detail & Related papers (2023-05-22T23:43:23Z) - Robust Medical Image Classification from Noisy Labeled Data with Global
and Local Representation Guided Co-training [73.60883490436956]
We propose a novel collaborative training paradigm with global and local representation learning for robust medical image classification.
We employ the self-ensemble model with a noisy label filter to efficiently select the clean and noisy samples.
We also design a novel global and local representation learning scheme to implicitly regularize the networks to utilize noisy samples.
arXiv Detail & Related papers (2022-05-10T07:50:08Z) - ScoreNet: Learning Non-Uniform Attention and Augmentation for
Transformer-Based Histopathological Image Classification [11.680355561258427]
High-resolution images hinder progress in digital pathology.
patch-based processing often incorporates multiple instance learning (MIL) to aggregate local patch-level representations yielding image-level prediction.
This paper proposes a transformer-based architecture specifically tailored for histological image classification.
It combines fine-grained local attention with a coarse global attention mechanism to learn meaningful representations of high-resolution images at an efficient computational cost.
arXiv Detail & Related papers (2022-02-15T16:55:09Z) - Mitigating Generation Shifts for Generalized Zero-Shot Learning [52.98182124310114]
Generalized Zero-Shot Learning (GZSL) is the task of leveraging semantic information (e.g., attributes) to recognize the seen and unseen samples, where unseen classes are not observable during training.
We propose a novel Generation Shifts Mitigating Flow framework for learning unseen data synthesis efficiently and effectively.
Experimental results demonstrate that GSMFlow achieves state-of-the-art recognition performance in both conventional and generalized zero-shot settings.
arXiv Detail & Related papers (2021-07-07T11:43:59Z) - Unlabeled Data Guided Semi-supervised Histopathology Image Segmentation [34.45302976822067]
Semi-supervised learning (SSL) based on generative methods has been proven to be effective in utilizing diverse image characteristics.
We propose a new data guided generative method for histopathology image segmentation by leveraging the unlabeled data distributions.
Our method is evaluated on glands and nuclei datasets.
arXiv Detail & Related papers (2020-12-17T02:54:19Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Graph Neural Networks for UnsupervisedDomain Adaptation of
Histopathological ImageAnalytics [22.04114134677181]
We present a novel method for the unsupervised domain adaptation for histological image analysis.
It is based on a backbone for embedding images into a feature space, and a graph neural layer for propa-gating the supervision signals of images with labels.
In experiments, our methodachieves state-of-the-art performance on four public datasets.
arXiv Detail & Related papers (2020-08-21T04:53:44Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.